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Example Applications:
• End-user programming
• Performance optimization of code
• Virtual assistant

Program Synthesis
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Can we teach computers to write code?



Programming Synthesis via Learning

• How to specify programming intent
• natural language description 
• input-output examples
• translation

• How to represent generated program
• neural networks (fully differentiable)
• discrete code (non-differentiable)
• hybrid (combining differentiable & non-differentiable components)



Programming Synthesis as a Perfect Playground for Intelligence

• Ultimate challenge for AGI
• Building robots without being limited by Physics

• Need ability to 

• Model the world

• Define goals & decompose goals

• Abstract & Reason

• Plan & Search



Synthesis via Learning: a Powerful Lens
• Target of synthesis
• Programs: 

• Program synthesis
• Learning-based program optimization

• Models: 
• model synthesis; autoML

• Proofs: 
• proof synthesis; automatic theorem proving

• Action plan:
• Robot action plan synthesis/agent synthesis

• Games, creations
• Creative synthesis



Example Program Synthesis
• Natural language description translating to code---end-user programming

• IFTTT programs [NIPS 2017]
• SQL queries

• Generalization and proof of guarantee for neural program synthesis [ICLR 2017]

• Other examples:
• Hybrid neural program synthesis: Learning a neural program operating a non-

differentiable machine 
• Learning program parser using I/O examples [ICLR 2018]

• Hierarchical options for neural programming
• Parameterized hierarchical procedures for neural programming [ICLR 2018]

• Automating theorem proving using deep learning
• Coq proof dataset/tool available
• GamePad: A Learning Environment for Theorem Proving

Daniel Huang, Prafulla Dhariwal, Dawn Song, Ilya Sutskever
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Lessons & Challenges in Program Synthesis via Learning

• Generalization
• Evaluation
• Be careful with your test set 

• Scalability
• Combining discrete & differentiable approaches
• Learning abstractions

• Adapt to new tasks
• Accumulate knowledge from past experience

• What should be a good benchmark suite for program synthesis?
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Neural Program Architectures
Neural Turing Machine 
(Graves et al)

Neural Programmer (Neelankatan et al)
Neural Programmer-Interpreter (Reed et al)
Neural GPU (Kaiser et al)

Stack Recurrent Nets (Joulin et al)
Learning Simple Algorithms from 
Examples (Zaremba et al)

Differentiable Neural 
Computer (Graves et al)

Neural Program Synthesis Tasks:  Copy, Grade-school addition, Sorting, Shortest Path

Nov 2014            May  2015             Dec  2015            May 2016       June 2016                    Oct 2016        

Reinforcement Learning 
Neural Turing Machines 
(Zaremba et al)



Challenge 1: Generalization
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Challenge 2: No Proof of Generalization
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Our Approach: Introduce Recursion

Learn recursive neural programs

Jonathon Cai, Richard Shin, Dawn Song: Making Neural Programming Architectures Generalize via Recursion
[ICLR 2017, Best Paper Award ] 



Recursion

Quicksort

• Fundamental concept in Computer Science and Math
• Solve whole problem by reducing it to smaller subproblems (reduction rules)
• Base cases (smallest subproblems) are easier to reason about



• Proof of Generalization: 
• Recursion enables provable guarantees about neural programs 
• Prove perfect generalization of a learned recursive program via a verification procedure

• Explicitly testing on all possible base cases and reduction rules (Verification set) 

• Learn & generalize faster as well
• Trained on same data, non-recursive programs do not generalize well

Jonathon Cai, Richard Shin, Dawn Song: Making Neural Programming Architectures Generalize via Recursion [ICLR 2017, Best Paper Award ] 

Our Approach: Making Neural Programming Architectures Generalize via Recursion 

Accuracy on Random Inputs for Quicksort



Lessons

• Program architecture impacts generalization & provability

• Recursive, modular neural architectures are easier to reason, prove, generalize

• Explore new architectures and approaches enabling strong generalization & security 
properties for broader tasks



Lessons & Challenges in Program Synthesis via Learning

• Generalization
• Evaluation
• Be careful with your test set 

• Scalability
• Combining discrete & differentiable approaches
• Learning abstractions

• Adapt to new tasks
• Accumulate knowledge from past experience

• What should be a good benchmark suite for program synthesis?



Background
Some past work in neural program synthesis from input-output examples:

● String transformations: Neuro-Symbolic Program Synthesis (Parisotto et 
al 2017), RobustFill (Devlin et al 2017)

● Array manipulation: DeepCoder (Balog et al 2017)
● Karel: Bunel et al 2018

These methods learn to search over possible programs, using supervised 
learning with a large synthetic training dataset.



Hypothesis of training on synthetic data:
Given a large enough random training set, the neural program synthesis 
model will work well on arbitrary tasks.

Our findings:
These models can be highly sensitive to how the random data was 
generated for more complex domains such as Karel. 

Choosing different I/O examples or programs can decrease accuracy to 0%.

New data generation methodology needed for training similar models.



Testing with new distributions over I/O examples
By changing the 
distribution over I/O 
examples, we can lower 
performance down to 
0.04%.

Wall ratio
Marker ratio

Marker counts

Best
(of 12)

Worst
(of 12)



Augmenting the training data
If we retrain a single model on 
a more uniform distribution 
over possible I/O, we 
significantly recover 
performance on the specialized 
distributions.

Note: the training distribution 
is not simply a union of the test 
distributions.

Wall ratio
Marker ratio

Marker counts



Lessons
● Randomly generated datasets can be unexpectedly biased in various 

ways
● Simple methods for random sampling may be insufficient
● Important to consider distributions over inputs, as well as programs
● New methodology for synthetic training data:

○ Define various salient random variables that capture desired features of the 
input space and the program space

○ Ensure uniformity the random variables as much as possible

● Training with our new methodology leads to significant performance 
improvement on various test sets



Lessons & Challenges in Program Synthesis via Learning

• Generalization
• Evaluation
• Be careful with your test set 

• Scalability
• Combining discrete & differentiable approaches
• Learning abstractions

• Adapt to new tasks
• Accumulate knowledge from past experience

• What should be a good benchmark suite for program synthesis?
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Neural Parser Synthesis

• Task: learning a parser as input-output program synthesis



25

Existing Approaches

• End-to-end neural networks: sequence-to-sequence based models
• Do not generalize well.
• Require a lot of training samples.
• In our evaluation, we demonstrate that the test accuracies of this type of models are 0%
when the test samples are longer than training ones.

• Neural symbolic program synthesis
• R3NN [4], RobustFill [5].
• Expressiveness of the program DSL is limited.
• The lengths of the synthesized programs are up to 20.

RobustFill model architecture [5][4] Parisotto et al. Neural-Symbolic Program Synthesis, ICLR 2017.
[5] Delvlin et al. RobustFill: Neural Program Learning under Noisy I/O, ICML 2017.
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Existing Approaches

• NPI-like approaches
• Training requires supervision on execution traces.
• The complexity of the learned algorithm is limited.

[6] Scott Reed, Nando de Freitas, Neural Programmer-Interpreters, ICLR 2016.
[7] Jonathon Cai, Richard Shin, Dawn Song, Making Neural Programming Architectures Generalize via Recursion, ICLR 2017.

Neural Programmer-Interpreter [6, 7]
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Goals

• Supervision on I/O pairs only
• No supervision on execution traces

• Full generalization
• 100% accuracy on arbitrarily long inputs

• Train with a few examples



28

Our Approach

• Differential neural programs operating a non-
differentiable machine

! + # Id Id

x y

Add

Parsing Machine

Inst1 Inst2 Inst3 Inst'

Neural Parsing Program

…

Towards Synthesizing Complex Programs from Input-Output Examples, Xinyun Chen, Chang Liu, Dawn Song.
International Conference on Learning Representations (ICLR), 2018.

https://arxiv.org/abs/1706.01284
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LL Machine
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Differential Neural Program

• Given the current state of the machine, predict which instruction to be executed 
next
• Using LSTM to predict instruction types and arguments
• Prediction is only based on stack top and the next token
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Challenge: execution traces are unknown!

• The space of possible execution traces is very large
• For a very simple input (e.g., of length 3), it requires 9 instructions to construct the parse
tree.

• Policy gradient could easily get stuck at a local optimum.

Input
length

Number of shortest valid execution
traces (under-estimation)

3 1572

5 2,771,712

7 7,458,826,752

An example of the alternative trace that leads to
the correct output.

For illustration purposes, here we consider the
grammar that includes only addition and
multiplication, which is a small subset of the
grammars in our evaluation.
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Reinforcement Learning-based Two-phase Search Algorithm

Instruction Argument

Phase I Phase II

Execution traces

Instruction 
traces

x+y Id Id

x y
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x y
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Reinforcement Learning-based Two-phase Search Algorithm

• Two-phase learning
• Input-output pairs only learning: use policy gradient to sample instruction traces, 

and rely on weakly supervised learning to verify if the trace is good or not.
• Weakly supervised learning: assuming instruction traces are provided, train the 

argument prediction networks (policy-gradient with specially designed reward 
functions).

No supervision on 
the traces

Weak supervision on 
instruction traces

Valid instruction traces

found in Phase I
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Evaluation
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Evaluation
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Lessons

• Neural programs operating a non-differentiable machine can achieve 
100% accuracy on test inputs with length 500× longer than training 
inputs, while an end-to-end neural network’s accuracy is 0%.

• The design of the non-differentiable machine is crucial to regularize the 
programs that can be synthesized, and leveraging reinforcement 
learning algorithms is the key to train a neural network to learn complex 
programs.



Lessons & Challenges in Program Synthesis via Learning

• Generalization
• Evaluation
• Be careful with your test set 

• Scalability
• Combining discrete & differentiable approaches
• Learning abstractions

• Adapt to new tasks
• Accumulate knowledge from past experience

• What should be a good benchmark suite for program synthesis?
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Theorem proving at multiple levels of abstraction

Automatic (e.g., SMT 
such as Z3 or tableaux 

prover)

Interactive (e.g., ITP such 
as Coq)

Hand-written (rigorous 
but not formal)



ML + TP at (close to) human-level but still formal?
Leverage ITP (interactive theorem prover)

Traced Coq (TCoq): records proof tree resulting from "execution trace" 
of a Coq proof

Use data generated by ITP

GamePad: theorem proving as a Game and Proofs as data. Provides 
Python API for TCoq proof trees and lightweight interaction with Coq.



Interactive theorem proving as a game
Objective is to transition all states (double rectangles where top is context 
and bottom is goal) into terminal states (circles). 

1. You can apply a tactic (i.e., take a proof step), which produces other 
contexts.

2. A state can transition to a terminal state if the goal trivially true given 
the context.



(PS 1)

forall n: nat, n + 0 = n

predict # of 
steps left to 
finish proof

Position Evaluation Tactic Prediction

Machine learning tasks (PS 1)

forall n: nat, n + 0 = n

predict next proof 
step
(e.g., induction n)

● Think of as value function
● Non-local problem

● Think of as policy
● Local problem
● May require argument 

synthesis
● Granularity of tactics 



Representing proof states

Convert proof state PSn into embedding 

vector

● Embed context and goal ASTs by 

embedding each AST.

● Can embed AST using more semantic 

approach. For example, the 

"interpreter inspired" embedding of 

a variable is an environment lookup 

because the meaning of a variable 

corresponds to whatever is 

substituted for it.

● Embedding sharing following AST 

sharing to save computation (~10x 

speedup over non-shared 



Use case 1: set up user-defined problem

Step 1:
Set up 
domain

Step 3:
Apply machine 
learning! We 
trained a naive 
tactic predictor 
(user-defined tactic 
surgery) and got 
14/50 complete 
proofs.

Step 2:
Generate 
proofs 
(difficulty of 
domain 
affects this 



Use case 2: learn from real-world formalization
Feit-Thompson formalization: one of the largest formal developments (in any 
system), concerns a deep result in group theory, follows "book proofs" 
(approx. 255 pages) and good candidate for auto-formalization

Preliminary experiments (accuracies reported)

Model Pos 
(Kernel)

Pos (Mid-
lvl no 
implicit)

Tac 
(Kernel)

Tac (Mid-
lvl no 
implicit)

Constant 53.66 53.66 44.75 44.75

SVM 57.37 57.52 48.94 49.45

GRU 65.30 65.74 58.23 57.50

TreeLSTM 68.44 66.30 60.63 60.55

Also tried 
predicting
identifiers used in 
tactics, but not 
synthesizing entire 
terms



Challenges
1. Leverage human supervision of proofs: TCoq records atomic tactics, 

compound tactics, and all proof contexts.
2. Using game-like structure of ITP proofs: applied GamePad to user-craft 

problem and real-world formalization.
3. Difference between syntax and semantics at higher-level of abstraction: 

implemented interpreter-inspired embeddings for proof contexts.



Future directions
Many interesting directions to explore for theorem proving at close to 
human-level proofs!

1. Develop more difficult yet tractable user-crafted problems (e.g., infinite 
sums or integrals)

2. Generative models for tactic arguments (particularly for have tactics)
3. End-to-end training (e.g., reinforcement learning + tree search)

Paper: https://arxiv.org/pdf/1806.00608.pdf

System: https://github.com/ml4tp/gamepad

https://arxiv.org/pdf/1806.00608.pdf
https://github.com/ml4tp/gamepad


Lessons & Challenges in Program Synthesis via Learning

• Generalization
• Evaluation
• Be careful with your test set 

• Scalability
• Combining discrete & differentiable approaches
• Learning abstractions

• Adapt to new tasks
• Accumulate knowledge from past experience

• What should be a good benchmark suite for program synthesis?


