
Dawn Song

UC Berkeley

Deep Learning for Program Synthesis:
Lessons and Challenges

Example Applications:
• End-user programming
• Performance optimization of code
• Virtual assistant

Program Synthesis

2

Program

Programming
Language

Intent

Program
Synthesizer

Can we teach computers to write code?

Programming Synthesis via Learning

• How to specify programming intent
• natural language description
• input-output examples
• translation

• How to represent generated program
• neural networks (fully differentiable)
• discrete code (non-differentiable)
• hybrid (combining differentiable & non-differentiable components)

Programming Synthesis as a Perfect Playground for Intelligence

• Ultimate challenge for AGI
• Building robots without being limited by Physics

• Need ability to

• Model the world

• Define goals & decompose goals

• Abstract & Reason

• Plan & Search

Synthesis via Learning: a Powerful Lens
• Target of synthesis
• Programs:

• Program synthesis
• Learning-based program optimization

• Models:
• model synthesis; autoML

• Proofs:
• proof synthesis; automatic theorem proving

• Action plan:
• Robot action plan synthesis/agent synthesis

• Games, creations
• Creative synthesis

Example Program Synthesis
• Natural language description translating to code---end-user programming

• IFTTT programs [NIPS 2017]
• SQL queries

• Generalization and proof of guarantee for neural program synthesis [ICLR 2017]

• Other examples:
• Hybrid neural program synthesis: Learning a neural program operating a non-

differentiable machine
• Learning program parser using I/O examples [ICLR 2018]

• Hierarchical options for neural programming
• Parameterized hierarchical procedures for neural programming [ICLR 2018]

• Automating theorem proving using deep learning
• Coq proof dataset/tool available
• GamePad: A Learning Environment for Theorem Proving

Daniel Huang, Prafulla Dhariwal, Dawn Song, Ilya Sutskever
6

Lessons & Challenges in Program Synthesis via Learning

• Generalization
• Evaluation
• Be careful with your test set

• Scalability
• Combining discrete & differentiable approaches
• Learning abstractions

• Adapt to new tasks
• Accumulate knowledge from past experience

• What should be a good benchmark suite for program synthesis?

Neural Program Synthesis
Training

data

452
345

123
234

357

Input

Output797

612
367

979

Neural Program Synthesis

Neural Program
Architecture

Learned neural
program

Test input Test output

120

Training
data

452
345

123
234

357

Input

Output797

612
367

979

50
70

Neural Program Architectures
Neural Turing Machine
(Graves et al)

Neural Programmer (Neelankatan et al)
Neural Programmer-Interpreter (Reed et al)
Neural GPU (Kaiser et al)

Stack Recurrent Nets (Joulin et al)
Learning Simple Algorithms from
Examples (Zaremba et al)

Differentiable Neural
Computer (Graves et al)

Neural Program Synthesis Tasks: Copy, Grade-school addition, Sorting, Shortest Path

Nov 2014 May 2015 Dec 2015 May 2016 June 2016 Oct 2016

Reinforcement Learning
Neural Turing Machines
(Zaremba et al)

Challenge 1: Generalization

Training
data

452
345

123
234

357

Input

Output797

612
367

979

length = 5

length = 3

Neural Program
Architecture

Learned neural
program

Test input Test output

5432134216
24320

58536

Challenge 2: No Proof of Generalization

Training
data

452
345

123
234

357

Input

Output797

612
367

979

length = 3

length = 5

Neural Program
Architecture

Learned neural
program

Test input Test output

34216
24320

Our Approach: Introduce Recursion

Learn recursive neural programs

Jonathon Cai, Richard Shin, Dawn Song: Making Neural Programming Architectures Generalize via Recursion
[ICLR 2017, Best Paper Award]

Recursion

Quicksort

• Fundamental concept in Computer Science and Math
• Solve whole problem by reducing it to smaller subproblems (reduction rules)
• Base cases (smallest subproblems) are easier to reason about

• Proof of Generalization:
• Recursion enables provable guarantees about neural programs
• Prove perfect generalization of a learned recursive program via a verification procedure

• Explicitly testing on all possible base cases and reduction rules (Verification set)

• Learn & generalize faster as well
• Trained on same data, non-recursive programs do not generalize well

Jonathon Cai, Richard Shin, Dawn Song: Making Neural Programming Architectures Generalize via Recursion [ICLR 2017, Best Paper Award]

Our Approach: Making Neural Programming Architectures Generalize via Recursion

Accuracy on Random Inputs for Quicksort

Lessons

• Program architecture impacts generalization & provability

• Recursive, modular neural architectures are easier to reason, prove, generalize

• Explore new architectures and approaches enabling strong generalization & security
properties for broader tasks

Lessons & Challenges in Program Synthesis via Learning

• Generalization
• Evaluation
• Be careful with your test set

• Scalability
• Combining discrete & differentiable approaches
• Learning abstractions

• Adapt to new tasks
• Accumulate knowledge from past experience

• What should be a good benchmark suite for program synthesis?

Background
Some past work in neural program synthesis from input-output examples:

● String transformations: Neuro-Symbolic Program Synthesis (Parisotto et
al 2017), RobustFill (Devlin et al 2017)

● Array manipulation: DeepCoder (Balog et al 2017)
● Karel: Bunel et al 2018

These methods learn to search over possible programs, using supervised
learning with a large synthetic training dataset.

Hypothesis of training on synthetic data:
Given a large enough random training set, the neural program synthesis
model will work well on arbitrary tasks.

Our findings:
These models can be highly sensitive to how the random data was
generated for more complex domains such as Karel.

Choosing different I/O examples or programs can decrease accuracy to 0%.

New data generation methodology needed for training similar models.

Testing with new distributions over I/O examples
By changing the
distribution over I/O
examples, we can lower
performance down to
0.04%.

Wall ratio
Marker ratio

Marker counts

Best
(of 12)

Worst
(of 12)

Augmenting the training data
If we retrain a single model on
a more uniform distribution
over possible I/O, we
significantly recover
performance on the specialized
distributions.

Note: the training distribution
is not simply a union of the test
distributions.

Wall ratio
Marker ratio

Marker counts

Lessons
● Randomly generated datasets can be unexpectedly biased in various

ways
● Simple methods for random sampling may be insufficient
● Important to consider distributions over inputs, as well as programs
● New methodology for synthetic training data:

○ Define various salient random variables that capture desired features of the
input space and the program space

○ Ensure uniformity the random variables as much as possible

● Training with our new methodology leads to significant performance
improvement on various test sets

Lessons & Challenges in Program Synthesis via Learning

• Generalization
• Evaluation
• Be careful with your test set

• Scalability
• Combining discrete & differentiable approaches
• Learning abstractions

• Adapt to new tasks
• Accumulate knowledge from past experience

• What should be a good benchmark suite for program synthesis?

24

Neural Parser Synthesis

• Task: learning a parser as input-output program synthesis

25

Existing Approaches

• End-to-end neural networks: sequence-to-sequence based models
• Do not generalize well.
• Require a lot of training samples.
• In our evaluation, we demonstrate that the test accuracies of this type of models are 0%
when the test samples are longer than training ones.

• Neural symbolic program synthesis
• R3NN [4], RobustFill [5].
• Expressiveness of the program DSL is limited.
• The lengths of the synthesized programs are up to 20.

RobustFill model architecture [5][4] Parisotto et al. Neural-Symbolic Program Synthesis, ICLR 2017.
[5] Delvlin et al. RobustFill: Neural Program Learning under Noisy I/O, ICML 2017.

26

Existing Approaches

• NPI-like approaches
• Training requires supervision on execution traces.
• The complexity of the learned algorithm is limited.

[6] Scott Reed, Nando de Freitas, Neural Programmer-Interpreters, ICLR 2016.
[7] Jonathon Cai, Richard Shin, Dawn Song, Making Neural Programming Architectures Generalize via Recursion, ICLR 2017.

Neural Programmer-Interpreter [6, 7]

27

Goals

• Supervision on I/O pairs only
• No supervision on execution traces

• Full generalization
• 100% accuracy on arbitrarily long inputs

• Train with a few examples

28

Our Approach

• Differential neural programs operating a non-
differentiable machine

! + # Id Id

x y

Add

Parsing Machine

Inst1 Inst2 Inst3 Inst'

Neural Parsing Program

…

Towards Synthesizing Complex Programs from Input-Output Examples, Xinyun Chen, Chang Liu, Dawn Song.
International Conference on Learning Representations (ICLR), 2018.

https://arxiv.org/abs/1706.01284

29

LL Machine

+z

Input
Stream

Id

x
T1

Id

y
T2

1

0 (Id, T1) (+,+)

(Id, T2)

Stack Shift
Reduce

Call
Return

Parser
Functionality

Stack
Operation

State Instruction Set

Termination Final

30

LL Machine

SHIFT REDUCE	<Id>,	(1)
Input
+" Id

x

T1Stack

REDUCE	<Op+>,	(1,	3)

Input
+"

StackInput
+ "

Stack
0

Input
"

Stack
Id
x

T1

SHIFT

CALL	1
Input
"

Stack
Id
x

T1
SHIFT

Input
EOF

Stack
1 (y, y)
0 (Id, T1), (+, +)

Id
x

T1

REDUCE	<Id>,	(1)
Input
EOF

Stack
Id
x

T1
Id
y

T2
RETURN

Input
EOF

Stack
0 (Id, T1), (+, +), (Id, T2) Id

x

T1
Id
y

T2

Id Id
x y

Input
EOF

Stack
(Op+, T3)

T3

FINAL

1 2 3

4 5

6 7

8 9

Id Id
x y

0

0 (x, x) 0 (Id, T1)

0 (Id, T1), (+, +)

1 (Id, T2)
0 (Id, T1), (+, +)

1
0 (Id, T1), (+, +)

Op+ Op+

Output prediction → Trace prediction
Provide constraints on the learned parsing programs

31

Differential Neural Program

• Given the current state of the machine, predict which instruction to be executed
next
• Using LSTM to predict instruction types and arguments
• Prediction is only based on stack top and the next token

32

Challenge: execution traces are unknown!

• The space of possible execution traces is very large
• For a very simple input (e.g., of length 3), it requires 9 instructions to construct the parse
tree.

• Policy gradient could easily get stuck at a local optimum.

Input
length

Number of shortest valid execution
traces (under-estimation)

3 1572

5 2,771,712

7 7,458,826,752

An example of the alternative trace that leads to
the correct output.

For illustration purposes, here we consider the
grammar that includes only addition and
multiplication, which is a small subset of the
grammars in our evaluation.

33

Reinforcement Learning-based Two-phase Search Algorithm

Instruction Argument

Phase I Phase II

Execution traces

Instruction
traces

x+y Id Id

x y

Add

x*y Id Id

x y

Mul

34

Reinforcement Learning-based Two-phase Search Algorithm

• Two-phase learning
• Input-output pairs only learning: use policy gradient to sample instruction traces,

and rely on weakly supervised learning to verify if the trace is good or not.
• Weakly supervised learning: assuming instruction traces are provided, train the

argument prediction networks (policy-gradient with specially designed reward
functions).

No supervision on
the traces

Weak supervision on
instruction traces

Valid instruction traces

found in Phase I

35

Evaluation

36

Evaluation

37

Lessons

• Neural programs operating a non-differentiable machine can achieve
100% accuracy on test inputs with length 500× longer than training
inputs, while an end-to-end neural network’s accuracy is 0%.

• The design of the non-differentiable machine is crucial to regularize the
programs that can be synthesized, and leveraging reinforcement
learning algorithms is the key to train a neural network to learn complex
programs.

Lessons & Challenges in Program Synthesis via Learning

• Generalization
• Evaluation
• Be careful with your test set

• Scalability
• Combining discrete & differentiable approaches
• Learning abstractions

• Adapt to new tasks
• Accumulate knowledge from past experience

• What should be a good benchmark suite for program synthesis?

Object
recognition

Question
answering

SQuAD

Language
modeling

Image captioning

Program
synthesis

?

Theorem proving at multiple levels of abstraction

Automatic (e.g., SMT
such as Z3 or tableaux

prover)

Interactive (e.g., ITP such
as Coq)

Hand-written (rigorous
but not formal)

ML + TP at (close to) human-level but still formal?
Leverage ITP (interactive theorem prover)

Traced Coq (TCoq): records proof tree resulting from "execution trace"
of a Coq proof

Use data generated by ITP

GamePad: theorem proving as a Game and Proofs as data. Provides
Python API for TCoq proof trees and lightweight interaction with Coq.

Interactive theorem proving as a game
Objective is to transition all states (double rectangles where top is context
and bottom is goal) into terminal states (circles).

1. You can apply a tactic (i.e., take a proof step), which produces other
contexts.

2. A state can transition to a terminal state if the goal trivially true given
the context.

(PS 1)

forall n: nat, n + 0 = n

predict # of
steps left to
finish proof

Position Evaluation Tactic Prediction

Machine learning tasks (PS 1)

forall n: nat, n + 0 = n

predict next proof
step
(e.g., induction n)

● Think of as value function
● Non-local problem

● Think of as policy
● Local problem
● May require argument

synthesis
● Granularity of tactics

Representing proof states

Convert proof state PSn into embedding

vector

● Embed context and goal ASTs by

embedding each AST.

● Can embed AST using more semantic

approach. For example, the

"interpreter inspired" embedding of

a variable is an environment lookup

because the meaning of a variable

corresponds to whatever is

substituted for it.

● Embedding sharing following AST

sharing to save computation (~10x

speedup over non-shared

Use case 1: set up user-defined problem

Step 1:
Set up
domain

Step 3:
Apply machine
learning! We
trained a naive
tactic predictor
(user-defined tactic
surgery) and got
14/50 complete
proofs.

Step 2:
Generate
proofs
(difficulty of
domain
affects this

Use case 2: learn from real-world formalization
Feit-Thompson formalization: one of the largest formal developments (in any
system), concerns a deep result in group theory, follows "book proofs"
(approx. 255 pages) and good candidate for auto-formalization

Preliminary experiments (accuracies reported)

Model Pos
(Kernel)

Pos (Mid-
lvl no
implicit)

Tac
(Kernel)

Tac (Mid-
lvl no
implicit)

Constant 53.66 53.66 44.75 44.75

SVM 57.37 57.52 48.94 49.45

GRU 65.30 65.74 58.23 57.50

TreeLSTM 68.44 66.30 60.63 60.55

Also tried
predicting
identifiers used in
tactics, but not
synthesizing entire
terms

Challenges
1. Leverage human supervision of proofs: TCoq records atomic tactics,

compound tactics, and all proof contexts.
2. Using game-like structure of ITP proofs: applied GamePad to user-craft

problem and real-world formalization.
3. Difference between syntax and semantics at higher-level of abstraction:

implemented interpreter-inspired embeddings for proof contexts.

Future directions
Many interesting directions to explore for theorem proving at close to
human-level proofs!

1. Develop more difficult yet tractable user-crafted problems (e.g., infinite
sums or integrals)

2. Generative models for tactic arguments (particularly for have tactics)
3. End-to-end training (e.g., reinforcement learning + tree search)

Paper: https://arxiv.org/pdf/1806.00608.pdf

System: https://github.com/ml4tp/gamepad

https://arxiv.org/pdf/1806.00608.pdf
https://github.com/ml4tp/gamepad

Lessons & Challenges in Program Synthesis via Learning

• Generalization
• Evaluation
• Be careful with your test set

• Scalability
• Combining discrete & differentiable approaches
• Learning abstractions

• Adapt to new tasks
• Accumulate knowledge from past experience

• What should be a good benchmark suite for program synthesis?

