Differentiable Inductive Logic Programming

Richard Evans, Ed Grefenstette @LittleBimble, @egrefen

https://jair.org/index.php/jair/article/view/11172

Overview

Our system, dILP, learns logic programs from examples.

∂ILP learns by back-propagation.

It is robust to noisy and ambiguous data.

Overview

- 1. Background
- 2. 3ILP
- 3. Experiments

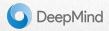
Given some input / output examples, learn a general procedure for transforming inputs into outputs.

Given some input / output examples, learn a general procedure for transforming inputs into outputs.

$$[] \mapsto 0$$
$$[2] \mapsto 1$$
$$[4,3] \mapsto 2$$
$$[1,2,2] \mapsto 3$$

Given some input / output examples, learn a general procedure for transforming inputs into outputs.

$$[[1]] \mapsto [[]]$$
 $[[4,3]] \mapsto [[4]]$
 $[[2,3],[1]] \mapsto [[2],[]]$
 $[[1,3,2],[2,4]] \mapsto [[1,3],[2]]$



We shall consider three approaches:

- 1. Symbolic program synthesis
- 2. Neural program induction
- 3. Neural program synthesis

Given some input/output examples, they produce an **explicit human-readable program** that, when evaluated on the inputs, produces the outputs.

They use a **symbolic search procedure** to find the program.

Input / Output Examples

Explicit Program

```
 [[1]] \mapsto [[]] \qquad \text{map (reverse . tail . reverse)} \\ [[4,3]] \mapsto [[4]] \\ [[2,3],[1]] \mapsto [[2],[]] \qquad \text{def remove\_last(x):} \\ [[1,3,2],[2,4]] \mapsto [[1,3],[2]] \qquad \text{return [y[0:len(y)-1] for y in x]} \\
```

Input / Output Examples

Explicit Program

```
 [[1]] \mapsto [[]] \qquad \text{map (reverse . tail . reverse)} \\ [[4,3]] \mapsto [[4]] \\ [[2,3],[1]] \mapsto [[2],[]] \qquad \text{def remove\_last(x):} \\ [[1,3,2],[2,4]] \mapsto [[1,3],[2]] \qquad \text{return [y[0:len(y)-1] for y in x]} \\ [[1,3,2],[2,4]] \mapsto [[1,3],[2]] \qquad \text{return [y[0:len(y)-1] for y in x]} \\ [[1,3,2],[2,4]] \mapsto [[1,3],[2]] \qquad \text{return [y[0:len(y)-1] for y in x]} \\ [[1,3,2],[2,4]] \mapsto [[1,3],[2]] \qquad \text{return [y[0:len(y)-1] for y in x]} \\ [[1,3,2],[2,4]] \mapsto [[1,3],[2]] \qquad \text{return [y[0:len(y)-1] for y in x]} \\ [[1,3,2],[2,4]] \mapsto [[1,3],[2]] \qquad \text{return [y[0:len(y)-1] for y in x]} \\ [[1,3,2],[2,4]] \mapsto [[1,3],[2]] \qquad \text{return [y[0:len(y)-1] for y in x]} \\ [[1,3,2],[2,4]] \mapsto [[1,3],[2]] \qquad \text{return [y[0:len(y)-1] for y in x]} \\ [[1,3,2],[2,4]] \mapsto [[1,3],[2]] \qquad \text{return [y[0:len(y)-1] for y in x]} \\ [[1,3,2],[2]] \qquad \text{return [y[0:len(y)-1] for y in x]} \\ [[1,3,2],[2]] \qquad \text{return [y[0:len(y)-1] for y in x]} \\ [[1,3,2],[2]] \qquad \text{return [y[0:len(y)-1] for y in x]} \\ [[1,3,2],[2]] \qquad \text{return [y[0:len(y)-1] for y in x]} \\ [[1,3,2],[2]] \qquad \text{return [y[0:len(y)-1] for y in x]} \\ [[1,3,2],[2]] \qquad \text{return [y[0:len(y)-1] for y in x]} \\ [[1,3,2],[2]] \qquad \text{return [y[0:len(y)-1] for y in x]} \\ [[1,3,2],[2]] \qquad \text{return [y[0:len(y)-1] for y in x]} \\ [[1,3,2],[2]] \qquad \text{return [y[0:len(y)-1] for y in x]} \\ [[1,3,2],[2]] \qquad \text{return [y[0:len(y)-1] for y in x]} \\ [[1,3,2],[2]] \qquad \text{return [y[0:len(y)-1] for y in x]} \\ [[1,3,2],[2]] \qquad \text{return [y[0:len(y)-1] for y in x]} \\ [[1,3,2],[2]] \qquad \text{return [y[0:len(y)-1] for y in x]} \\ [[1,3,2],[2]] \qquad \text{return [y[0:len(y)-1] for y in x]} \\ [[1,3,2],[2]] \qquad \text{return [y[0:len(y)-1] for y in x]} \\ [[1,3,2],[2]] \qquad \text{return [y[0:len(y)-1] for y in x]} \\ [[1,3,2],[2]] \qquad \text{return [y[0:len(y)-1] for y in x]} \\ [[1,3,2],[2]] \qquad \text{return [y[0:len(y)-1] for y in x]} \\ [[1,3,2],[2]] \qquad \text{return [y[0:len(y)-1] for y in x]} \\ [[1,3,2],[2]] \qquad \text{return [y[0:len(y)-1] for y in x]} \\ [[1,3,2],[2]] \qquad \text{return [y[0:len(y)-1] for y in x]} \\ [[1,3,2],[2]] \qquad \text{return [y[0:len(y)-1] for y in x]} \\ [[1,3,2],[2]] \qquad \text{return [y[0:len(y)-1] for y in x]} \\ [[1,3,2],[2]] \qquad \text{re
```

Examples: MagicHaskeller, λ², Igor-2, Progol, Metagol

Data-efficient? Yes

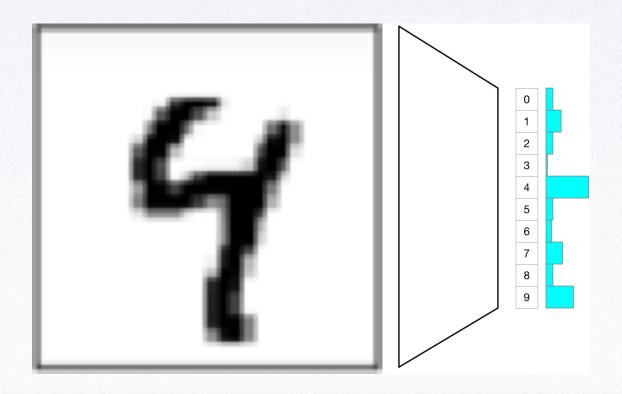
Interpretable? Yes

Generalises outside training data? Yes

Robust to mislabelled data? Sometimes

Robust to ambiguous data?

Ambiguous Data



Neural Program Induction (NPI)

Given input/output pairs, a neural network learns a procedure for mapping inputs to outputs.

The network generates the output from the input directly, using a **latent representation of the program**.

Here, the general procedure is **implicit** in the weights of the model.

Neural Program Induction (NPI)

Examples:

Differentiable Neural Computers (Graves et al., 2016)

Neural Stacks/Queues (Grefenstette et al., 2015)

Learning to Infer Algorithms (Joulin & Mikolov, 2015)

Neural Programmer-Interpreters (Reed and de Freitas, 2015)

Neural GPUs (Kaiser and Sutskever, 2015)

Neural Program Induction (NPI)

Data-efficient? Not very

Interpretable? No

Generalises outside training data? Sometimes

Robust to mislabelled data? Yes

Robust to ambiguous data? Yes

The Best of Both Worlds?

	SPS	NPI	Ideally
Data-efficient?	Yes	Not always	Yes
Interpretable?	Yes	No	Yes
Generalises outside training data?	Yes	Not always	Yes
Robust to mislabelled data?	Not very	Yes	Yes
Robust to ambiguous data?	No	Yes	Yes

Neural Program Synthesis (NPS)

Given some input/output examples, produce an **explicit human-readable program** that, when evaluated on the inputs, produces the outputs.

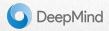
Use an optimisation procedure (e.g. gradient descent) to find the program.

Neural Program Synthesis (NPS)

Given some input/output examples, produce an **explicit human-readable program** that, when evaluated on the inputs, produces the outputs.

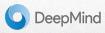
Use an optimisation procedure (e.g. gradient descent) to find the program.

Examples: 3ILP, RobustFill, Differentiable Forth, End-to-End Differentiable Proving



The Three Approaches

	Procedure is implicit	Procedure is explicit
Symbolic search		Symbolic Program Synthesis
Optimisation procedure	Neural Program Induction	Neural Program Synthesis



The Three Approaches

	Procedure is implicit	Procedure is explicit
Symbolic search		Symbolic Program Synthesis
Optimisation procedure	Neural Program Induction	Neural Program Synthesis

The Three Approaches

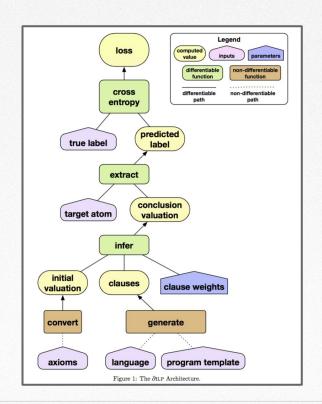
	SPS	NPI	NPS
Data-efficient?	Yes	Not always	Yes
Interpretable?	Yes	No	Yes
Generalises outside training data?	Yes	Not always	Yes
Robust to mislabelled data?	No	Yes	Yes
Robust to ambiguous data?	No	Yes	Yes

3ILP uses a differentiable model of forward chaining inference.

The weights represent a probability distribution over clauses.

We use SGD to minimise the log-loss.

We extract a readable program from the weights.





A **valuation** is a vector in [0,1]ⁿ

It maps each of *n* ground atoms to [0,1].

A valuation represents how likely it is that each of the ground atoms is true.

G	\mathbf{a}_0
p(a)	0.0
p(b)	0.0
q(a)	0.1
q(b)	0.3
1	0.0

Each clause c is compiled into a function on valuations:

$$F_c: [0,1]^n \to [0,1]^n$$

For example:

$$p(X) \leftarrow q(X)$$

G	\mathbf{a}_0	$\mathcal{F}_c(\mathbf{a_0})$
p(a)	0.0	0.1
p(b)	0.0	0.3
q(a)	0.1	0.0
q(b)	0.3	0.0
	0.0	0.0

OILP

We combine the clauses' valuations using a weighted sum:

$$b_t = \sum_{c} F_c(a_t) \frac{e^{W[c]}}{\sum_{c'} e^{W[c']}}$$

We amalgamate the previous valuation with the new clauses' valuation:

$$a_{t+1} = a_t + b_t - a_t \cdot b_t$$

We unroll the network for *T* steps of forward-chaining inference, generating:

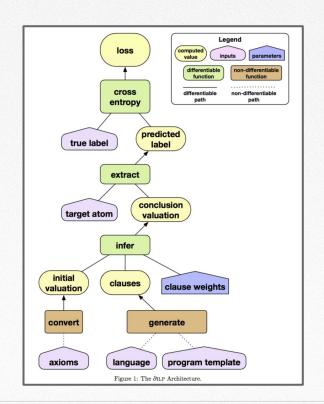
$$a_0, a_1, a_2, a_3, ..., a_T$$

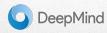
3ILP uses a differentiable model of forward chaining inference.

The weights represent a probability distribution over clauses.

We use SGD to minimise the log-loss.

We extract a readable program from the weights.





Each clause c is compiled into a function on valuations:

$$F_c: [0,1]^n \to [0,1]^n$$

For example:

$$p(X) \leftarrow q(X)$$

G	\mathbf{a}_0	$\mathcal{F}_c(\mathbf{a_0})$
p(a)	0.0	0.1
p(b)	0.0	0.3
q(a)	0.1	0.0
q(b)	0.3	0.0
1	0.0	0.0

Assume that each clause has two atoms in the body. For example:

$$r(X,Y) \leftarrow p(X,Z), q(Z,Y)$$

We calculate, for each ground atom, the pairs of ground atoms that contribute to its truth:

$$r(a,a) : \{(p(a,a), q(a,a)), (p(a,b), q(b,a))\}$$

$$r(a,b) : \{(p(a,a),q(a,b)), (p(a,b),q(b,b))\}$$

$$r(b,a) : \{(p(b,a),q(a,a)), (p(b,b),q(b,a))\}$$

$$r(b,b)$$
: { $(p(b,a),q(a,b)), (p(b,b),q(b,b))$ }

Given our rule:

$$r(X,Y) \leftarrow p(X,Z), q(Z,Y)$$

We convert the pairs of atoms into pairs of indices:

k	γ_k	x_k
0		{}
1	p(a,a)	{}
2	p(a,b)	{}
3	p(b,a)	{}
4	p(b,b)	{}

\boldsymbol{k}	γ_k	x_k
5	q(a,a)	{}
6	q(a,b)	{}
7	q(b,a)	{}
8	q(b,b)	{}

\boldsymbol{k}	γ_k	x_k
9	r(a,a)	$\{(1,5), (2,7)\}$
10	r(a,b)	$\{(1, 6), (2, 8)\}$
11	r(b,a)	$\{(3, 5), (4, 7)\}$
12	r(b,b)	$\{(3, 6), (4, 8)\}$

We convert:

$$r(a,a) : \{(p(a,a), q(a,a)), (p(a,b), q(b,a))\}$$

$$r(a,b) : \{(p(a,a), q(a,b)), (p(a,b), q(b,b))\}$$

$$r(b,a) : \{(p(b,a),q(a,a)), (p(b,b),q(b,a))\}$$

 $r(b,b) : \{(p(b,a),q(a,b)), (p(b,b),q(b,b))\}$

into:

k	γ_k	x_k
0	T	{}
1	p(a,a)	{}
2	p(a,b)	{}
3	p(b,a)	{}
4	p(b,b)	{}

\overline{k}	γ_k	x_k
5	q(a,a)	{}
6	q(a,b)	{}
7	q(b,a)	{}
8	q(b,b)	{}

\boldsymbol{k}	γ_k	x_k
9	r(a,a)	$\{(1,5), (2,7)\}$
10	r(a,b)	$\{(1, 6), (2, 8)\}$
11	r(b,a)	$\{(3, 5), (4, 7)\}$
12	r(b,b)	$\{(3, 6), (4, 8)\}$

We convert:

k	γ_k	x_k
0	1	{}
1	p(a,a)	{}
2	p(a,b)	{}
3	p(b,a)	{}
4	p(b,b)	{}

\boldsymbol{k}	γ_k	x_k
5	q(a,a)	{}
6	q(a,b)	{}
7	q(b,a)	{}
8	q(b,b)	{}

\boldsymbol{k}	γ_k	x_k
9	r(a,a)	$\{(1,5), (2,7)\}$
10	r(a,b)	$\{(1, 6), (2, 8)\}$
11	r(b,a)	$\{(3, 5), (4, 7)\}$
12	r(b,b)	$\{(3, 6), (4, 8)\}$

into a tensor of shape n * w * 2:

k	γ_k	$\mathbf{X}[k]$
0	Ī	$\begin{bmatrix} (0,0) \\ (0,0) \end{bmatrix}$
1	p(a,a)	$\begin{bmatrix} (0,0) \\ (0,0) \end{bmatrix}$
2	p(a,b)	$\begin{bmatrix} (0,0) \\ (0,0) \end{bmatrix}$
3	p(b,a)	$\begin{bmatrix} (0,0) \\ (0,0) \end{bmatrix}$
4	p(b,b)	$\begin{bmatrix} (0,0) \\ (0,0) \end{bmatrix}$

$$\begin{array}{c|ccc} k & \gamma_k & \mathbf{X}[k] \\ \hline 5 & q(a,a) & \begin{bmatrix} (0,0) \\ (0,0) \end{bmatrix} \\ 6 & q(a,b) & \begin{bmatrix} (0,0) \\ (0,0) \end{bmatrix} \\ 7 & q(b,a) & \begin{bmatrix} (0,0) \\ (0,0) \end{bmatrix} \\ 8 & q(b,b) & \begin{bmatrix} (0,0) \\ (0,0) \end{bmatrix} \\ \end{array}$$

\boldsymbol{k}	γ_k	$\mathbf{X}[k]$
9	r(a,a)	$\begin{bmatrix} (1,5) \\ (2,7) \end{bmatrix}$
10	r(a,b)	$\begin{bmatrix} (1,6) \\ (2,8) \end{bmatrix}$
11	r(b,a)	$\begin{bmatrix} (3,5) \\ (4,7) \end{bmatrix}$
12	r(b,b)	$\begin{bmatrix} (3,6) \\ (4,8) \end{bmatrix}$

OILP

We split our tensor X into two matrices of shape n * w:

$$\mathbf{X}_1 = \mathbf{X}[:,:,0]$$
 $\mathbf{X}_2 = \mathbf{X}[:,:,1]$

We gather up the results:

$$\mathbf{Y}_1 = \mathsf{gather}_2(\mathbf{a}, \mathbf{X}_1) \qquad \mathbf{Y}_2 = \mathsf{gather}_2(\mathbf{a}, \mathbf{X}_2)$$

We take the element-wise product:

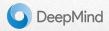
$$\mathbf{Z} = \mathbf{Y}_1 \odot \mathbf{Y}_2$$

Here, **Z** is of shape n * w. Now we take the max across the second dimension:

$$F_c(\mathbf{a}) = \mathbf{a}' \text{ where } \mathbf{a}'[k] = \max(\mathbf{Z}[k,:])$$

$r(X,Y) \leftarrow p(X,Z), q(Z,Y)$

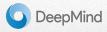
k	γ_k	$\mathbf{a}[k]$	$\mathbf{X}_1[k]$	$\mathbf{X}_2[k]$	$\mathbf{Y}_1[k]$	$\mathbf{Y}_{2}[k]$	$\mathbf{Z}[k]$	$F_c(\mathbf{a})[k]$
0	_	0.0	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	[0 0]	[0 0]	0.00
1	p(a,a)	1.0	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
2	p(a,b)	0.9	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	[0 0]	0.00
3	p(b,a)	0.0	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
4	p(b,b)	0.0	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
5	q(a,a)	0.1	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
6	q(a,b)	0.0	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
7	q(b,a)	0.2	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
8	q(b,b)	0.8	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
9	r(a,a)	0.0	$\begin{bmatrix} 1 & 2 \end{bmatrix}$	$\begin{bmatrix} 5 & 7 \end{bmatrix}$	$\begin{bmatrix} 1.0 & 0.9 \end{bmatrix}$	$\begin{bmatrix} 0.1 & 0.2 \end{bmatrix}$	$\begin{bmatrix} 0.1 & 0.18 \end{bmatrix}$	0.18
10	r(a,b)	0.0	$\begin{bmatrix} 1 & 2 \end{bmatrix}$	$\begin{bmatrix} 6 & 8 \end{bmatrix}$	$\begin{bmatrix} 1.0 & 0.9 \end{bmatrix}$	$\begin{bmatrix} 0 & 0.8 \end{bmatrix}$	$\begin{bmatrix} 0 & 0.72 \end{bmatrix}$	0.72
11	r(b,a)	0.0	$\begin{bmatrix} 3 & 4 \end{bmatrix}$	$\begin{bmatrix} 5 & 7 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0.1 & 0.2 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
12	r(b,b)	0.0	$\begin{bmatrix} 3 & 4 \end{bmatrix}$	$\begin{bmatrix} 6 & 8 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0.8 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00



$$r(X,Y) \leftarrow p(X,Z), q(Z,Y)$$

 $r(a,b) \leftarrow p(a,b), q(b,b)$

\overline{k}	γ_k	$\mathbf{a}[k]$	$\mathbf{X}_1[k]$	$\mathbf{X}_2[k]$	$\mathbf{Y}_1[k]$	$\mathbf{Y}_2[k]$	$\mathbf{Z}[k]$	$F_c(\mathbf{a})[k]$
0	_	0.0	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	[0 0]	[0 0]	[0 0]	0.00
1	p(a,a)	1.0	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
2	p(a,b)	0.9	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
3	p(b,a)	0.0	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
4	p(b,b)	0.0	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
5	q(a,a)	0.1	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
6	q(a,b)	0.0	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
7	q(b,a)	0.2	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
8	q(b,b)	0.8	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
9	r(a,a)	0.0	$\begin{bmatrix} 1 & 2 \end{bmatrix}$	$\begin{bmatrix} 5 & 7 \end{bmatrix}$	$\begin{bmatrix} 1.0 & 0.9 \end{bmatrix}$	$\begin{bmatrix} 0.1 & 0.2 \end{bmatrix}$	$\begin{bmatrix} 0.1 & 0.18 \end{bmatrix}$	0.18
10	r(a,b)	0.0	$\begin{bmatrix} 1 & 2 \end{bmatrix}$	$\begin{bmatrix} 6 & 8 \end{bmatrix}$	$\begin{bmatrix} 1.0 & 0.9 \end{bmatrix}$	$\begin{bmatrix} 0 & 0.8 \end{bmatrix}$	$\begin{bmatrix} 0 & 0.72 \end{bmatrix}$	0.72
11	r(b,a)	0.0	$\begin{bmatrix} 3 & 4 \end{bmatrix}$	$\begin{bmatrix} 5 & 7 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0.1 & 0.2 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
12	r(b,b)	0.0	$\begin{bmatrix} 3 & 4 \end{bmatrix}$	$\begin{bmatrix} 6 & 8 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0.8 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00



$r(X,Y) \leftarrow p(X,Z), q(Z,Y)$ $r(a,b) \leftarrow p(a,b), q(b,b)$

3								- 12
k	γ_k	$\mathbf{a}[k]$	$\mathbf{X}_1[k]$	$\mathbf{X}_2[k]$	$\mathbf{Y}_1[k]$	$\mathbf{Y}_2[k]$	$\mathbf{Z}[k]$	$F_c(\mathbf{a})[k]$
0		0.0	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	[0 0]	[0 0]	[0 0]	0.00
1	p(a,a)	1.0	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
2	p(a,b)	0.9	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
3	p(b,a)	0.0	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
4	p(b,b)	0.0	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
5	q(a,a)	0.1	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
6	q(a,b)	0.0	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
7	q(b,a)	0.2	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
8	q(b,b)	0.8	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
9	r(a,a)	0.0	$\begin{bmatrix} 1 & 2 \end{bmatrix}$	$\begin{bmatrix} 5 & 7 \end{bmatrix}$	$\begin{bmatrix} 1.0 & 0.9 \end{bmatrix}$	$\begin{bmatrix} 0.1 & 0.2 \end{bmatrix}$	$\begin{bmatrix} 0.1 & 0.18 \end{bmatrix}$	0.18
10	r(a,b)	0.0	$\begin{bmatrix} 1 & 2 \end{bmatrix}$	$\begin{bmatrix} 6 & 8 \end{bmatrix}$	$\begin{bmatrix} 1.0 & 0.9 \end{bmatrix}$	$\begin{bmatrix} 0 & 0.8 \end{bmatrix}$	$\begin{bmatrix} 0 & 0.72 \end{bmatrix}$	0.72
11	r(b,a)	0.0	$\begin{bmatrix} 3 & 4 \end{bmatrix}$	$\begin{bmatrix} 5 & 7 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0.1 & 0.2 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
12	r(b,b)	0.0	$\begin{bmatrix} 3 & 4 \end{bmatrix}$	$\begin{bmatrix} 6 & 8 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0.8 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00



$$r(X,Y) \leftarrow p(X,Z), q(Z,Y)$$
$$r(a,b) \leftarrow p(a,b), q(b,b)$$

3								
k	γ_k	$\mathbf{a}[k]$	$\mathbf{X}_1[k]$	$\mathbf{X}_2[k]$	$\mathbf{Y}_1[k]$	$\mathbf{Y}_2[k]$	$\mathbf{Z}[k]$	$F_c(\mathbf{a})[k]$
0	_	0.0	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	[0 0]	[0 0]	[0 0]	0.00
1	p(a,a)	1.0	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
2	p(a,b)	0.9	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
3	p(b,a)	0.0	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
4	p(b,b)	0.0	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
5	q(a,a)	0.1	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
6	q(a,b)	0.0	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
7	q(b,a)	0.2	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
8	q(b,b)	0.8	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
9	r(a,a)	0.0	$\begin{bmatrix} 1 & 2 \end{bmatrix}$	$\begin{bmatrix} 5 & 7 \end{bmatrix}$	$\begin{bmatrix} 1.0 & 0.9 \end{bmatrix}$	$\begin{bmatrix} 0.1 & 0.2 \end{bmatrix}$	$\begin{bmatrix} 0.1 & 0.18 \end{bmatrix}$	0.18
10	r(a,b)	0.0	$\begin{bmatrix} 1 & 2 \end{bmatrix}$	$\begin{bmatrix} 6 & 8 \end{bmatrix}$	$\begin{bmatrix} 1.0 & 0.9 \end{bmatrix}$	$\begin{bmatrix} 0 & 0.8 \end{bmatrix}$	$\begin{bmatrix} 0 & 0.72 \end{bmatrix}$	0.72
11	r(b,a)	0.0	$\begin{bmatrix} 3 & 4 \end{bmatrix}$	$\begin{bmatrix} 5 & 7 \end{bmatrix}$	[0 0]	$\begin{bmatrix} 0.1 & 0.2 \end{bmatrix}$	[0 0]	0.00
12	r(b,b)	0.0	$\begin{bmatrix} 3 & 4 \end{bmatrix}$	$\begin{bmatrix} 6 & 8 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0.8 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00



$$r(X,Y) \leftarrow p(X,Z), q(Z,Y)$$

 $r(a,b) \leftarrow p(a,b), q(b,b)$

37								
k	γ_k	$\mathbf{a}[k]$	$\mathbf{X}_1[k]$	$\mathbf{X}_2[k]$	$\mathbf{Y}_1[k]$	$\mathbf{Y}_2[k]$	$\mathbf{Z}[k]$	$F_c(\mathbf{a})[k]$
0	_	0.0	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	[0 0]	[0 0]	0.00
1	p(a,a)	1.0	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
2	p(a,b)	0.9	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
3	p(b,a)	0.0	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
4	p(b,b)	0.0	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
5	q(a,a)	0.1	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
6	q(a,b)	0.0	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
7	q(b,a)	0.2	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
8	q(b,b)	0.8	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
9	r(a,a)	0.0	$\begin{bmatrix} 1 & 2 \end{bmatrix}$	$\begin{bmatrix} 5 & 7 \end{bmatrix}$	$\begin{bmatrix} 1.0 & 0.9 \end{bmatrix}$	$\begin{bmatrix} 0.1 & 0.2 \end{bmatrix}$	$\begin{bmatrix} 0.1 & 0.18 \end{bmatrix}$	0.18
10	r(a,b)	0.0	$\begin{bmatrix} 1 & 2 \end{bmatrix}$	$\begin{bmatrix} 6 & 8 \end{bmatrix}$	$\begin{bmatrix} 1.0 & 0.9 \end{bmatrix}$	$\begin{bmatrix} 0 & 0.8 \end{bmatrix}$	$\begin{bmatrix} 0 & 0.72 \end{bmatrix}$	0.72
11	r(b,a)	0.0	$\begin{bmatrix} 3 & 4 \end{bmatrix}$	$\begin{bmatrix} 5 & 7 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0.1 & 0.2 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
12	r(b,b)	0.0	$\begin{bmatrix} 3 & 4 \end{bmatrix}$	$\begin{bmatrix} 6 & 8 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0.8 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00



$$r(X,Y) \leftarrow p(X,Z), q(Z,Y)$$

 $r(a,b) \leftarrow p(a,b), q(b,b)$

3								
\boldsymbol{k}	γ_k	$\mathbf{a}[k]$	$\mathbf{X}_1[k]$	$\mathbf{X}_2[k]$	$\mathbf{Y}_1[k]$	$\mathbf{Y}_2[k]$	$\mathbf{Z}[k]$	$F_c(\mathbf{a})[k]$
0		0.0	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	[0 0]	[0 0]	0.00
1	p(a,a)	1.0	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
2	p(a,b)	0.9	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
3	p(b,a)	0.0	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
4	p(b,b)	0.0	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
5	q(a,a)	0.1	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
6	q(a,b)	0.0	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
7	q(b,a)	0.2	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
8	q(b,b)	0.8	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
9	r(a,a)	0.0	$\begin{bmatrix} 1 & 2 \end{bmatrix}$	$\begin{bmatrix} 5 & 7 \end{bmatrix}$	$\begin{bmatrix} 1.0 & 0.9 \end{bmatrix}$	$\begin{bmatrix} 0.1 & 0.2 \end{bmatrix}$	$\begin{bmatrix} 0.1 & 0.18 \end{bmatrix}$	0.18
10	r(a,b)	0.0	$[1 \ 2]$	$\begin{bmatrix} 6 & 8 \end{bmatrix}$	$\begin{bmatrix} 1.0 & 0.9 \end{bmatrix}$	$\begin{bmatrix} 0 & 0.8 \end{bmatrix}$	$\begin{bmatrix} 0 & 0.72 \end{bmatrix}$	0.72
11	r(b,a)	0.0	$\begin{bmatrix} 3 & 4 \end{bmatrix}$	$\begin{bmatrix} 5 & 7 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0.1 & 0.2 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
12	r(b,b)	0.0	$\begin{bmatrix} 3 & 4 \end{bmatrix}$	$\begin{bmatrix} 6 & 8 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0.8 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00

$$r(X,Y) \leftarrow p(X,Z), q(Z,Y)$$

 $r(a,b) \leftarrow p(a,b), q(b,b)$

k	γ_k	$\mathbf{a}[k]$	$\mathbf{X}_1[k]$	$\mathbf{X}_2[k]$	$\mathbf{Y}_1[k]$	$\mathbf{Y}_2[k]$	$\mathbf{Z}[k]$	$F_c(\mathbf{a})[k]$
0		0.0	[0 0]	[0 0]	[0 0]	[0 0]	[0 0]	0.00
1	p(a,a)	1.0	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
2	p(a,b)	0.9	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
3	p(b,a)	0.0	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
4	p(b,b)	0.0	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
5	q(a,a)	0.1	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
6	q(a,b)	0.0	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
7	q(b,a)	0.2	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
8	q(b,b)	0.8	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
9	r(a,a)	0.0	$\begin{bmatrix} 1 & 2 \end{bmatrix}$	$\begin{bmatrix} 5 & 7 \end{bmatrix}$	$\begin{bmatrix} 1.0 & 0.9 \end{bmatrix}$	$\begin{bmatrix} 0.1 & 0.2 \end{bmatrix}$	[0.1 0.18]	0.18
10	r(a,b)	0.0	$[1 \ 2]$	$\begin{bmatrix} 6 & 8 \end{bmatrix}$	$[1.0 \ 0.9]$	[0 0.8]	$\begin{bmatrix} 0 & 0.72 \end{bmatrix}$	0.72
11	r(b,a)	0.0	$\begin{bmatrix} 3 & 4 \end{bmatrix}$	$\begin{bmatrix} 5 & 7 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0.1 & 0.2 \end{bmatrix}$	[0 0]	0.00
12	r(b,b)	0.0	$\begin{bmatrix} 3 & 4 \end{bmatrix}$	$\begin{bmatrix} 6 & 8 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0.8 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00

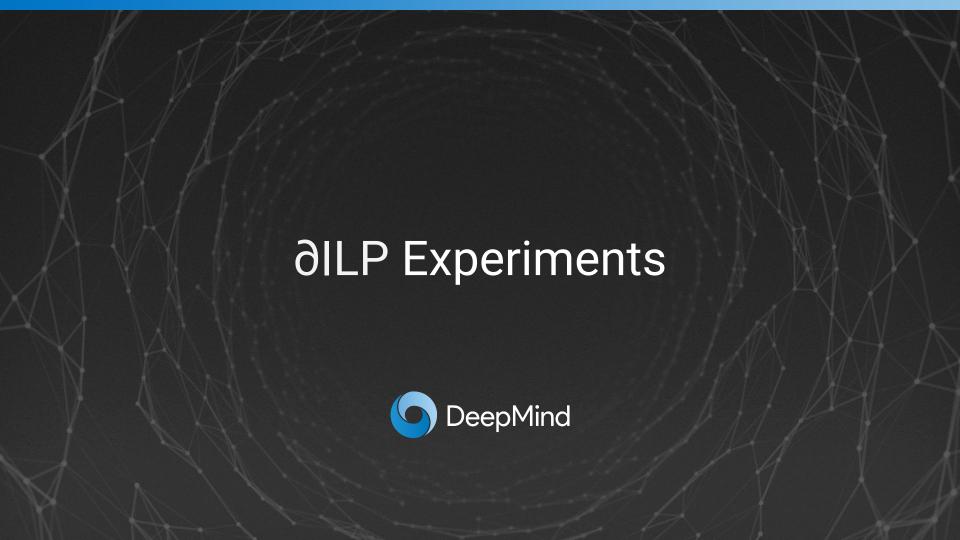


$$r(X,Y) \leftarrow p(X,Z), q(Z,Y)$$

 $r(a,b) \leftarrow p(a,b), q(b,b)$

33								
k	γ_k	$\mathbf{a}[k]$	$\mathbf{X}_1[k]$	$\mathbf{X}_2[k]$	$\mathbf{Y}_1[k]$	$\mathbf{Y}_2[k]$	$\mathbf{Z}[k]$	$F_c(\mathbf{a})[k]$
0	_	0.0	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	[0 0]	0.00
1	p(a,a)	1.0	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
2	p(a,b)	0.9	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
3	p(b,a)	0.0	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
4	p(b,b)	0.0	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
5	q(a,a)	0.1	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
6	q(a,b)	0.0	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
7	q(b,a)	0.2	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
8	q(b,b)	0.8	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
9	r(a,a)	0.0	$\begin{bmatrix} 1 & 2 \end{bmatrix}$	$\begin{bmatrix} 5 & 7 \end{bmatrix}$	$\begin{bmatrix} 1.0 & 0.9 \end{bmatrix}$	$\begin{bmatrix} 0.1 & 0.2 \end{bmatrix}$	[0.1] 0.18	0.18
10	r(a,b)	0.0	$[1 \ 2]$	$\begin{bmatrix} 6 & 8 \end{bmatrix}$	$[1.0 \ 0.9]$	[0 0.8]	$\begin{bmatrix} 0 & 0.72 \end{bmatrix}$	0.72
11	r(b,a)	0.0	$\begin{bmatrix} 3 & 4 \end{bmatrix}$	$\begin{bmatrix} 5 & 7 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0.1 & 0.2 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00
12	r(b,b)	0.0	$\begin{bmatrix} 3 & 4 \end{bmatrix}$	$\begin{bmatrix} 6 & 8 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0.8 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0.00

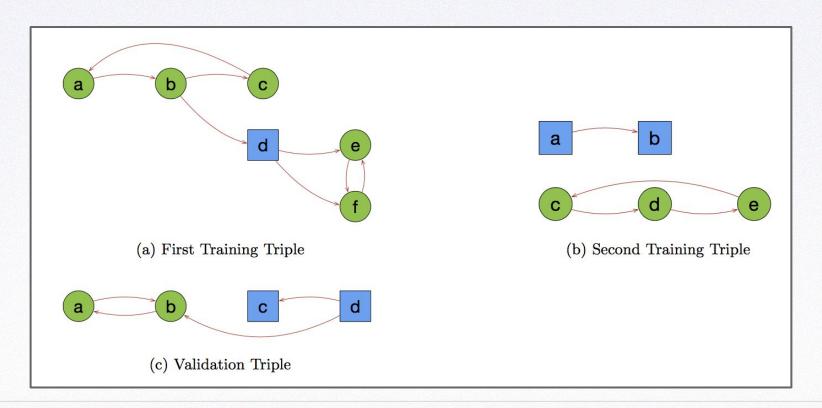




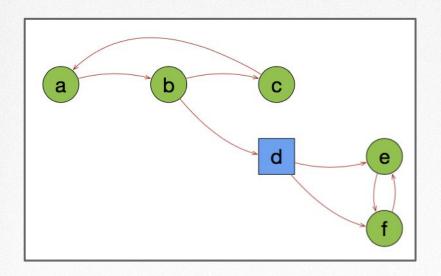
Domain	Task	$ P_i $	Recursive	Metagol Performance	$\partial \mathrm{ILP}$ Performance
Arithmetic	Predecessor	1	No	✓	✓
Arithmetic	Even / odd	2	Yes	\checkmark	\checkmark
Arithmetic	Even / succ2	2	Yes	\checkmark	\checkmark
Arithmetic	Less than	1	Yes	\checkmark	\checkmark
Arithmetic	Fizz	3	Yes	\checkmark	\checkmark
Arithmetic	Buzz	2	Yes	\checkmark	\checkmark
Lists	Member	1	Yes	\checkmark	\checkmark
Lists	Length	2	Yes	\checkmark	\checkmark
Family Tree	Son	2	No	\checkmark	\checkmark
Family Tree	Grandparent	2	No	\checkmark	\checkmark
Family Tree	Husband	2	No	\checkmark	\checkmark
Family Tree	Uncle	2	No	\checkmark	\checkmark
Family Tree	Relatedness	1	No	×	✓
Family Tree	Father	1	No	\checkmark	\checkmark
Graphs	Undirected Edge	1	No	\checkmark	✓
Graphs	Adjacent to Red	2	No	\checkmark	\checkmark
Graphs	Two Children	2	No	\checkmark	\checkmark
Graphs	Graph Colouring	2	Yes	\checkmark	\checkmark
Graphs	Connectedness	1	Yes	×	\checkmark
Graphs	Cyclic	2	Yes	×	√

Table 2: A Comparison Between ∂ILP and Metagol on 20 Symbolic Tasks

Example Task: Graph Cyclicity



Example Task: Graph Cyclicity



```
cycle(X) \leftarrow pred(X, X).
pred(X, Y) \leftarrow edge(X, Y).
pred(X, Y) \leftarrow edge(X, Z), pred(Z, Y)
```

Example: Fizz-Buzz

 $2 \rightarrow 2$

3 → Fizz

4 → 4

5 → Buzz

6 → Fizz

7 *→* 7

8 + 8

9 → Fizz

10 → Buzz

11 → 11

12 → Fizz

13 → 13

14 → 14

15 → Fizz+Buzz

16 → 16

17 → 17

18 → Fizz

19 → 19

20 → Buzz

Example: Fizz

```
fizz(X) \leftarrow zero(X).
fizz(X) \leftarrow fizz(Y), pred1(Y, X).
pred1(X, Y) \leftarrow succ(X, Z), pred2(Z, Y).
pred2(X, Y) \leftarrow succ(X, Z), succ(Z, Y).
```


Example: Fizz

```
fizz(X) \leftarrow zero(X).
fizz(X) \leftarrow fizz(Y), pred1(Y, X).
pred1(X, Y) \leftarrow succ(X, Z), pred2(Z, Y).
pred2(X, Y) \leftarrow succ(X, Z), succ(Z, Y).
```


Example: Buzz

$$buzz(X) \leftarrow zero(X).$$

$$buzz(X) \leftarrow buzz(Y), pred3(Y, X).$$

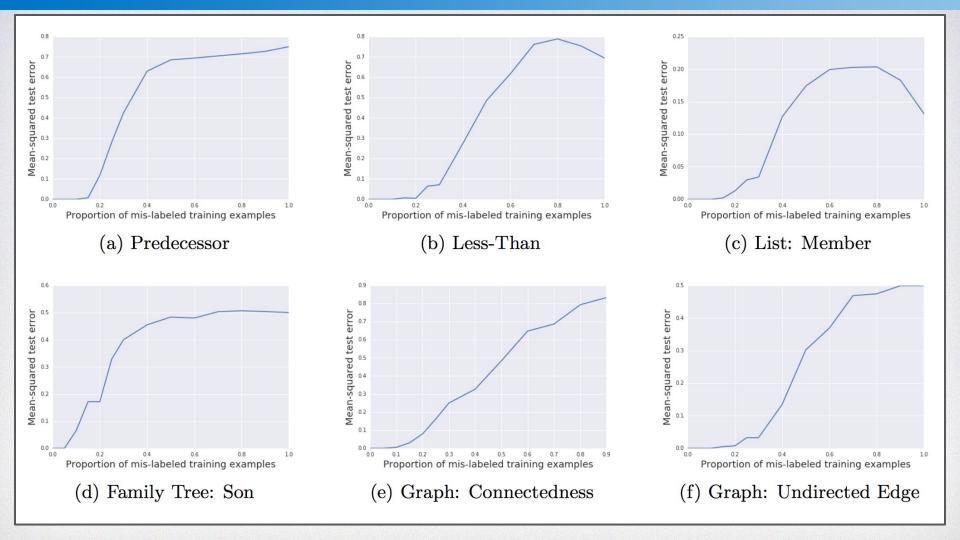
$$pred3(X, Y) \leftarrow pred1(X, Z), pred2(Z, Y).$$

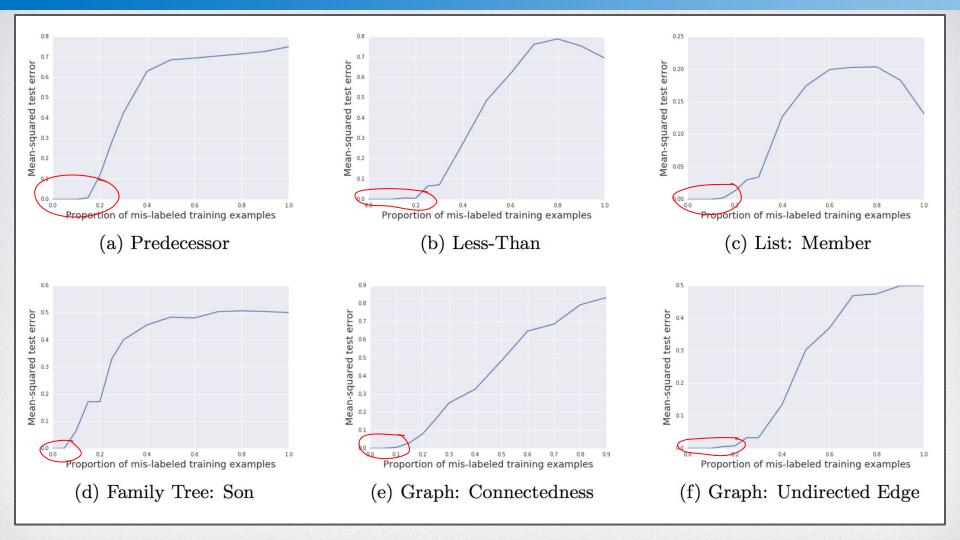
$$pred1(X, Y) \leftarrow succ(X, Z), pred2(Z, Y).$$

$$pred2(X, Y) \leftarrow succ(X, Z), succ(Z, Y).$$

Mis-labelled Data

- If Symbolic Program Synthesis is given a single mis-labelled piece of training data, it fails catastrophically.
- We tested ∂ILP with mis-labelled data.
- We mis-labelled a certain proportion ρ of the training examples.
- We ran experiments for different values of $\rho = 0.0, 0.1, 0.2, 0.3, ...$

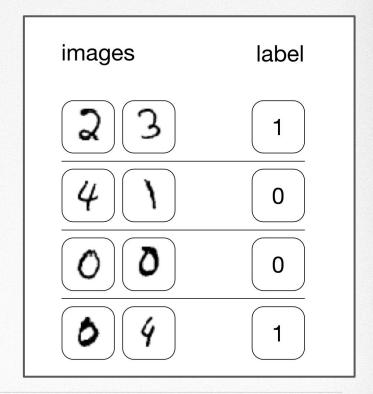




Example: Learning Rules from Ambiguous Data

Your system observes:

- a pair of images
- a label indicating whether the left image is less than the right image



Example: Learning Rules from Ambiguous Data

Your system observes:

- a pair of images
- a label indicating whether the left image is less than the right image

Two forms of generalisation:

It must decide if the relation holds for held-out images, and also *held-out* pairs of digits.

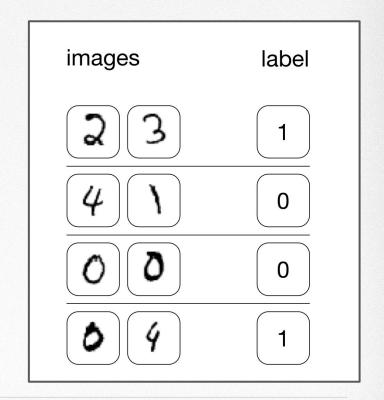
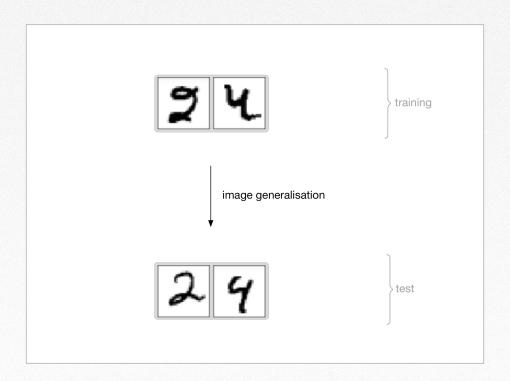
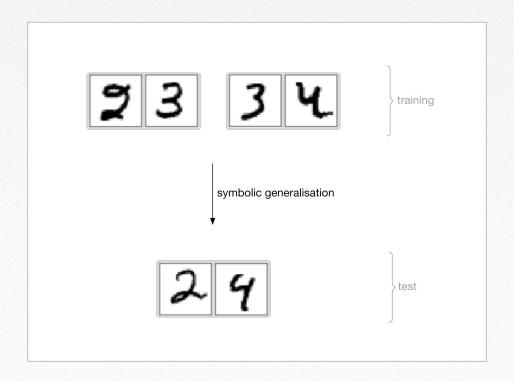
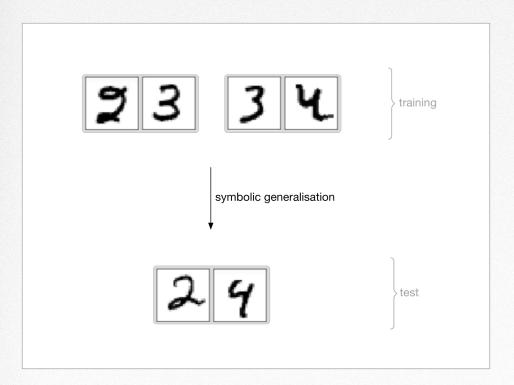


Image Generalisation



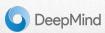




NB it has never seen *any* examples of 2 < 4 in training

0 < 1	0 < 2	0 < 3	0 < 4	0 < 5	0 < 6	0 < 7	0 < 8	0 < 9
	1 < 2	1 < 3	1 < 4	1 < 5	1 < 6	1 < 7	1 < 8	1 < 9
		2 < 3	2 < 4	2 < 5	2 < 6	2 < 7	2 < 8	2 < 9
			3 < 4	3 < 5	3 < 6	3 < 7	3 < 8	3 < 9
				4 < 5	4 < 6	4 < 7	4 < 8	4 < 9
					5 < 6	5 < 7	5 < 8	5 < 9
						6 < 7	6 < 8	6 < 9
							7 < 8	7 < 9
								8 < 9

0 < 1	0 < 2	0 < 3	0 < 4	0 < 5	0 < 6	0 < 7	0 < 8	0 < 9
	1 < 2	1 < 3	1 < 4	1 < 5	1 < 6	1 < 7	1 < 8	1 < 9
		2 < 3	2 < 4	2 < 5	2 < 6	2 < 7	2 < 8	2 < 9
			3 < 4	3 < 5	3 < 6	3 < 7	3 < 8	3 < 9
				4 < 5	4 < 6	4 < 7	4 < 8	4 < 9
					5 < 6	5 < 7	5 < 8	5 < 9
						6 < 7	6 < 8	6 < 9
							7 < 8	7 < 9
								8 < 9



0 < 1	0 < 2	0 < 3	0 < 4	0 < 5	0 < 6	0 < 7	0 < 8	0 < 9
	1 < 2	1 < 3	1 < 4	1 < 5		1 < 7	1 < 8	1 < 9
		2 < 3	2 < 4	2 < 5	2 < 6	2 < 7		2 < 9
			3 < 4		3 < 6	3 < 7	3 < 8	3 < 9
				4 < 5	4 < 6	4 < 7	4 < 8	4 < 9
					5 < 6	5 < 7	5 < 8	5 < 9
						6 < 7	6 < 8	6 < 9
							7 < 8	
								8 < 9

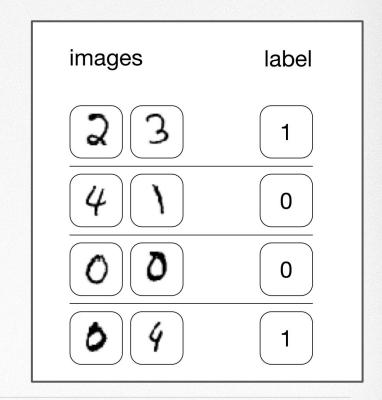
Example: Less Than on MNIST Images

Your system observes:

- a pair of images
- a label indicating whether the left image is less than the right image

Two forms of generalisation:

It must decide if the relation holds for held-out images, and also *held-out* pairs of digits.



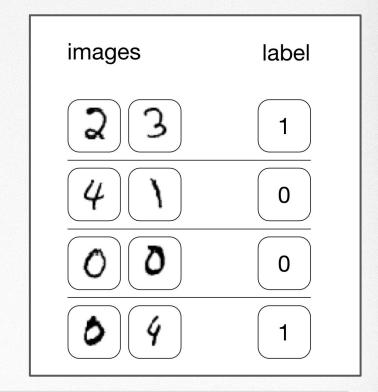
MLP Baseline

We created a baseline MLP to solve this task.

The output of the conv-net for the two images is a vector of (20) logits.

We added a hidden layer, produced a single output, and trained on cross-entropy loss.

The MLP baseline can solve this task easily.



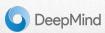
0 < 1	0 < 2	0 < 3	0 < 4	0 < 5	0 < 6	0 < 7	0 < 8	0 < 9
	1 < 2	1 < 3	1 < 4	1 < 5	1 < 6	1 < 7	1 < 8	1 < 9
		2 < 3	2 < 4	2 < 5	2 < 6	2 < 7	2 < 8	2 < 9
			3 < 4	3 < 5	3 < 6	3 < 7	3 < 8	3 < 9
				4 < 5	4 < 6	4 < 7	4 < 8	4 < 9
					5 < 6	5 < 7	5 < 8	5 < 9
						6 < 7	6 < 8	6 < 9
							7 < 8	7 < 9
								8 < 9

0 < 1	0 < 2	0 < 3	0 < 4	0 < 5	0 < 6	0 < 7	0 < 8	0 < 9
	1 < 2	1 < 3	1 < 4	1 < 5	1 < 6	1 < 7	1 < 8	1 < 9
		2 < 3	2 < 4	2 < 5	2 < 6	2 < 7	2 < 8	2 < 9
			3 < 4	3 < 5	3 < 6	3 < 7	3 < 8	3 < 9
				4 < 5	4 < 6	4 < 7	4 < 8	4 < 9
					5 < 6	5 < 7	5 < 8	5 < 9
						6 < 7	6 < 8	6 < 9
							7 < 8	7 < 9
								8 < 9
	0 < 1		1 < 2 1 < 3	1<2 1<3 1<4 2<3 2<4	1 < 2	1 < 2	1 < 2	1 < 2

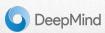
0 < 1	0 < 2	0 < 3	0 < 4	0 < 5	0 < 6	0 < 7	0 < 8	0 < 9
	1 < 2	1 < 3	1 < 4	1 < 5		1 < 7	1 < 8	1 < 9
		2 < 3	2 < 4	2 < 5	2 < 6	2 < 7		2 < 9
			3 < 4		3 < 6	3 < 7	3 < 8	3 < 9
				4 < 5	4 < 6	4 < 7	4 < 8	4 < 9
					5 < 6	5 < 7	5 < 8	5 < 9
						6 < 7	6 < 8	6 < 9
							7 < 8	
								8 < 9
	0 < 1		1 < 2 1 < 3	1<2 1<3 1<4 2<3 2<4	1<2 1<3 1<4 1<5 2<3 2<4 2<5 3<4	1<2	1 < 2	1 1 1 1 1 1 8 2 2 2 2 2 2 2 2 2 7 3 8 3 3 4 3 6 3 7 3 8 4 4 5 4 4 4 4 8 5 5 5 5 5 5 8 6 6 7 6 8

0 < 1	0 < 2	0 < 3	0 < 4	0 < 5	0 < 6	0 < 7	0 < 8	0 < 9
	1 < 2	1 < 3	1 < 4	1 < 5		1 < 7	1 < 8	1 < 9
		2 < 3	2 < 4	2 < 5	2 < 6	2 < 7		2 < 9
			3 < 4		3 < 6	3 < 7	3 < 8	3 < 9
				4 < 5	4 < 6	4 < 7	4 < 8	4 < 9
					5 < 6	5 < 7	5 < 8	5 < 9
						6 < 7	6 < 8	6 < 9
							7 < 8	
								8 < 9

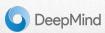
0 < 1	0 < 2	0 < 3	0 < 4	0 < 5	0 < 6	0 < 7		0 < 9
	1 < 2		1 < 4	1 < 5		1 < 7	1 < 8	1 < 9
		2 < 3	2 < 4	2 < 5	2 < 6	2 < 7		2 < 9
			3 < 4		3 < 6	3 < 7	3 < 8	3 < 9
				4 < 5	4 < 6	4 < 7	4 < 8	
						5 < 7	5 < 8	5 < 9
						6 < 7	6 < 8	6 < 9
							7 < 8	
								8 < 9



0 < 1	0 < 2	0 < 3	0 < 4	0 < 5	0 < 6	0 < 7		0 < 9
	1 < 2		1 < 4	1 < 5		1 < 7	1 < 8	1 < 9
		2 < 3	2 < 4	2 < 5	2 < 6	2 < 7		2 < 9
			3 < 4		3 < 6	3 < 7	3 < 8	3 < 9
				4 < 5	4 < 6	4 < 7	4 < 8	
						5 < 7	5 < 8	5 < 9
						6 < 7	6 < 8	6 < 9
							7 < 8	
								8 < 9

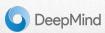


0 < 1	0 < 2		0 < 4	0 < 5	0 < 6	0 < 7		0 < 9
	1 < 2		1 < 4			1 < 7	1 < 8	1 < 9
		2 < 3	2 < 4	2 < 5	2 < 6	2 < 7		
			3 < 4		3 < 6	3 < 7	3 < 8	3 < 9
				4 < 5	4 < 6	4 < 7	4 < 8	
						5 < 7	5 < 8	5 < 9
								6 < 9
							7 < 8	
								8 < 9



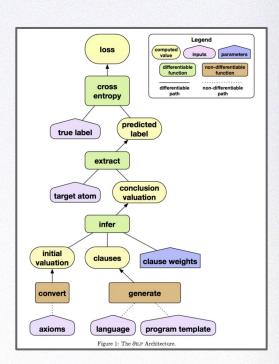
0 < 1	0 < 2		0 < 4	0 < 5	0 < 6	0 < 7		0 < 9
	1 < 2		1 < 4			1 < 7	1 < 8	1 < 9
		2 < 3	2 < 4	2 < 5	2 < 6	2 < 7		
			3 < 4		3 < 6	3 < 7	3 < 8	3 < 9
				4 < 5	4 < 6	4 < 7	4 < 8	
						5 < 7	5 < 8	5 < 9
								6 < 9
							7 < 8	
								8 < 9

0 < 1			0 < 4	0 < 5	0 < 6	0 < 7		0 < 9
	1 < 2		1 < 4			1 < 7	1 < 8	1 < 9
		2 < 3	2 < 4	2 < 5		2 < 7		
			3 < 4		3 < 6			3 < 9
				4 < 5	4 < 6	4 < 7	4 < 8	
						5 < 7	5 < 8	5 < 9
								6 < 9
							7 < 8	



OILP Learning Less-Than

We made a slight modification to our original architecture:

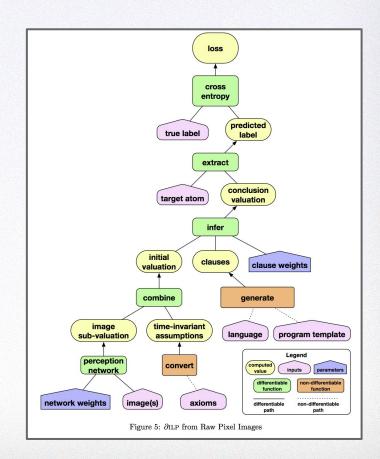


OILP Learning Less-Than

We pre-trained a conv-net to recognise MNIST digits.

We convert the logits of the conv-net into a probability distribution over logical atoms.

Our model is able to solve this task.



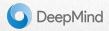
OILP Learning Less-Than

```
target() ← image2(X), pred1(X)

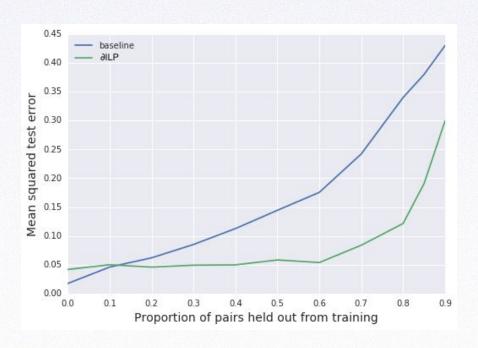
pred1(X) ← image1(Y), pred2(Y, X)

pred2(X, Y) ← succ(X, Y)

pred2(X, Y) ← pred2(Z, Y), pred2(X, Z)
```



Comparing all P with the Baseline



Comparing all P with the Baseline

Conclusion

∂ILP aims to combine the advantages of Symbolic Program Synthesis with the advantages of Neural Program Induction:

- It is data efficient
- It can learn interpretable and general rules
- It is robust to mislabelled data
- It can handle ambiguous input
- It can be integrated and trained jointly within larger neural systems/agents