
Synthetic Datasets for Neural Program Synthesis

Richard Shin 1 Neel Kant 1 2 Kavi Gupta 1 Christopher Bender 1 2 Brandon Trabucco 1 2 Rishabh Singh 3

Dawn Song 1

1. Introduction
Neural program synthesis approaches learn techniques
to search programs in a domain-specific language (DSL)
trained on a large corpus of DSL programs. This technique
has been instantiated for many domains including learning
string transformations in RobustFill (Devlin et al., 2017b;
Parisotto et al., 2017), array programs in DeepCoder (Balog
et al., 2016), and more recently in Karel programs (Devlin
et al., 2017a; Bunel et al., 2018). These approaches typi-
cally train the models on a large number of synthetically
generated programs and the corresponding synthetic specifi-
cations, relying on the hypothesis that if the model is able
to accurately predict arbitrary programs in the DSL, then it
can also predict well on new test distributions.

In this paper, we consider the recently proposed synthe-
sis model for Karel (Bunel et al., 2018). We find that on
many distributions of input examples and DSL programs,
the Karel synthesis model trained on existing synthetic data
performs poorly. In particular, choosing different I/O ex-
amples for the same test programs or choosing different
programs significantly decreases the prediction accuracy, in
some cases leading to even 0%.

We propose a new methodology for generating different dis-
tributions over programs in the DSL, as well as over inputs
which specify the program. Consider a DSL D specified
using a context-free grammar that denotes its syntax, and let
the valid input space I be specified using another other enu-
merable space. Formally, we define two sets of salient ran-
dom variables X = {X1, · · · } and Z = {Z1, · · · }, where
the random variable Xi denotes a certain important feature
in the DSL D and the random variable Zj denotes a feature
for the input space.

Karel programs control an agent in a grid world; each cell in
the grid can contain markers, a wall, or neither. We devised
the following salient random variables to describe the input

1University of California, Berkeley 2Machine Learning at
Berkeley 3Google Brain. Correspondence to: Richard Shin <ric-
shin@cs.berkeley.edu>.

Published at the ICML workshop Neural Abstract Machines &
Program Induction v2 (NAMPI) — Extended Abstract, Stockholm,
Sweden, 2018. Copyright 2018 by the author(s).

space of grid worlds: grid size; marker ratio, fraction of
cells with at least one marker; wall ratio, fraction of cells
which contain a wall; marker count, random variable which
specifies how many markers are in a cell which has markers.
For the program space, we used: program size, size of the
program in terms of number of tokens; control flow ratio,
number of control flow structures appearing in the program;
nested control flow, the amount of control flow nesting in
programs (e.g. while inside if); odd/even length, programs
of even and odd lengths.

2. How the Existing Model Fails
By imposing various distributions over the salient random
variables when producing the input/output specifications
and target programs which are the test set, we observe
much lower accuracies of the previous Karel synthesis mod-
els (Bunel et al., 2018) compared to the original test set.

Input space: uniform distribution. We first generated
grids such that they would follow a distribution that is as
uniform as possible in the salient features. Specifically, we
sampled the grid size, marker ratio, wall ratio, and marker
count uniformly. On this dataset, the model achieved accu-
racy of only 27.9%, which was a drop of 44.6pp from the
existing test set’s accuracy of 73.52%.

Input space: narrow distributions. We further investi-
gated the drop in performance noted above by synthesizing
“narrower” datasets that captured different parts of the joint
probability space over the salient input random variables.
For each narrow dataset, we selected rwall and rmarker (both
between 0 and 1) as well as a distributionDmarker count which
would be the same for all I/O grids. In our experiments,
we primarily used 3 different distributions for Dmarker count:
Geom(0.5) truncated at 9, U{1, 9}, and 10 − Geom(0.5)
(10 minus a sample from Geom(0.5)) truncated at 1. The
top row of Table 1 shows the baseline model’s performance
on these test sets.

Program space: actions only. Intuitively, much of the
difficulty in the Karel program synthesis task should come
from inferring the control flow statements, i.e. if, ifElse,
and while. Synthesizing a Karel program that only con-



Synthetic Datasets for Neural Program Synthesis

Table 1. Generalization accuracies of baseline model and model trained on uniformly distributed salient random variables on selected
datasets. G,U , and A stand for Geom(0.5),U{1, 9} and 10−Geom(0.5) respectively.

rwall 0.05 0.25 0.65 0.85
rmarker 0.85 0.65 0.25 0.05

Dmarker count G U A G U A G U A G U A

Baseline (%) 24.30 1.32 0.04 21.08 2.98 0.08 16.63 13.31 6.63 15.99 12.88 12.98
Uniform (%) 63.90 65.68 65.75 59.96 60.32 59.13 62.0 62.94 63.92 73.83 75.66 76.25

∆ +39.6 +64.36 +65.71 +38.88 +57.34 +59.05 +45.37 +49.63 +57.29 +57.84 +62.78 +63.27

Table 2. Results on programs only containing actions. The accuracy on action-only programs in the existing test set is 99.24%.

Program length

Model type 1 2 3 4 5 6 7 8

Baseline 16.00% 30.00% 44.24% 52.88% 56.56% 66.94% 67.16% 73.06%
Action-Only Augmented 20.00% 41.60% 52.24% 61.72% 63.04% 72.20% 72.74% 78.12%

Table 3. Partitioning training and test sets based on whether the
number of tokens in the program is odd or even. Testing on the
other configuration leads to a significant decline in performance.

Train Test Exact match Generalization

Odd Odd 36.03% 59.26%
Odd Even 0.84% (-35.19 p.p.) 41.69% (-17.57 p.p.)
Even Even 40.78% 62.58%
Even Odd 0.84% (-39.94 p.p.) 40.74% (-21.84 p.p.)

tains actions is intrinsically a much more straightforward
task. We performed an experiment using test datasets gen-
erated by enumerating action-only programs of various
lengths. The top row of Table 2 shows the results.

Program space: odd/even length. In this experiment, we
introduced a divergence in the distributions of training and
test programs by partitioning them based on whether they
contain an odd or even number of tokens. After we split the
training dataset into these two parts, we trained a separate
model for each part. We then tested each model on each of
the two parts of the test dataset, for a total of four evaluations.
Table 3 shows the accuracy obtained in each setting. As
the training dataset is smaller, the model overall does not
perform as well. Nevertheless, accuracy drops significantly
when we test a model on the other partition.

Program space: complex DSL constructs. We exam-
ined whether the model could synthesize programs which
require nested conditional constructs; these programs were
relatively rare in the training dataset. We generated an eval-
uation dataset comprised solely of programs that contained
while inside while statements, and another dataset in
which all programs had while inside if statements. We
found that the model fared very poorly on these datasets,

achieving only 0.64% and 2.23% accuracy respectively.

3. Training the Model on New Datasets
Various imbalances of the salient random variables in the
existing training data could have caused the gaps in perfor-
mance seen in the previous section. Thus, a natural solution
is to to train using datasets constructed to avoid undesirable
skews in the salient random variables.

Training datasets with uniform I/O. We generated a
training dataset by taking the programs of the existing train-
ing set and synthesizing I/O pairs with the approach from
Input space: uniform distribution. We trained a model
on this data and then evaluated it on the same set of nar-
row distribution evaluation datasets as mentioned in Input
space: narrow distributions. Table 1 compares how this new
model performs to the baseline model. The model trained on
uniform I/O distributions maintains much higher inference
accuracy on the narrow input space distribution test sets
than the baseline model. Note that the uniform I/O distribu-
tion is not simply a union of the narrow distributions, but
nevertheless intended to cover all possible specifications.

Adding action-only programs to training data. We ob-
served that the model fails to do well on action-only pro-
grams despite their relative simplicity. We suspected that
this was due to non-uniformity in the distribution of program
length. A principled way to counteract this would be to in-
troduce uniformity into the distribution of program length
as it is a salient output random variable. We proceeded
by adding 20,000 action-only programs of each length, 1
through 20, to the given training set in order to train a new
model. Table 2 shows the clear improvement in performance
in this metric by the newly trained model over the baseline.



Synthetic Datasets for Neural Program Synthesis

References
Balog, Matej, Gaunt, Alexander L., Brockschmidt, Marc,

Nowozin, Sebastian, and Tarlow, Daniel. Deep-
coder: Learning to write programs. arXiv preprint
arXiv:1611.01989, 2016.

Bunel, Rudy, Hausknecht, Matthew, Devlin, Jacob, Singh,
Rishabh, and Kohli, Pushmeet. Leveraging grammar and
reinforcement learning for neural program synthesis. In
ICLR, 2018.

Devlin, Jacob, Bunel, Rudy R., Singh, Rishabh, Hausknecht,
Matthew J., and Kohli, Pushmeet. Neural program meta-
induction. In NIPS, pp. 2077–2085, 2017a.

Devlin, Jacob, Uesato, Jonathan, Bhupatiraju, Surya, Singh,
Rishabh, Mohamed, Abdel-rahman, and Kohli, Pushmeet.
Robustfill: Neural program learning under noisy I/O. In
ICML, pp. 990–998, 2017b.

Parisotto, Emilio, Mohamed, Abdel-rahman, Singh,
Rishabh, Li, Lihong, Zhou, Dengyong, and Kohli, Push-
meet. Neuro-symbolic program synthesis. ICLR, 2017.


