
Improving Neural Program Synthesis with Inferred Execution Traces

Richard Shin 1 * Illia Polosukhin 2 Dawn Song 1

1. Introduction
Several recent papers have proposed neural network-based
approaches to program synthesis from input/output exam-
ples (Parisotto et al., 2017; Devlin et al., 2017; Bunel et al.,
2018). These methods use an end-to-end encoder-decoder
approach, where a neural network learns to generate a pro-
gram from an encoding of a program specification (a set
of input/output examples) from a large synthetic training
dataset.

Given that an execution trace is a strict superset of an in-
put/output example, intuition suggests that program syn-
thesis from traces should be easier than synthesis from I/O.
Indeed, work such as Reed & de Freitas (2016) have success-
fully used traces in program induction. However, execution
traces are more challenging for the end user to specify, so it
is hard to reap their benefits. In this work, we use the insight
that if encoder-decoder neural networks can synthesize pro-
grams from input/output examples, they should also be able
to infer execution traces. Thus, we can split the problem
into two steps: use input/output examples to infer execution
traces, and then use execution traces to infer the program.
Our empirical results show that this simple modification
leads to state-of-the-art results on the Karel (Pattis, 1981)
program synthesis task, improving upon (Bunel et al., 2018)
from 77.12% to 81.3% accuracy.

Our analysis shows greater accuracy on programs of varying
lengths and complexities, demonstrating the general utility
of the approach. This is despite the fact that we only use
straightforward maximum likelihood training, which is eas-
ier to tune than reinforcement learning methods of prior
work.

2. Background
Karel is an educational programming language (Pattis
(1981)). It features an agent inside a grid world, where

*Work partially performed at NEAR. 1Computer Science Di-
vision, University of California, Berkeley, Berkeley, California,
USA 2NEAR, San Francisco, California, USA. Correspondence
to: Richard Shin <ricshin@cs.berkeley.edu>.

Published at the ICML workshop Neural Abstract Machines &
Program Induction v2 (NAMPI) — Extended Abstract, Stockholm,
Sweden, 2018. Copyright 2018 by the author(s).

Convolutions → FC 

<s> turnRight turnRight move

</s>turnRight turnRight move

Conv → FC Conv → FC Conv → FC 

Input/output pair 
Intermediate states

Figure 1. Architecture of I/O → TRACE model.

certain cells can contain markers or walls. The agent starts
at some cell in the grid (which may contain markers but no
obstacle), and has move, turn{Left,Right} as actions
to move, and {pick,put}Marker to manipulate mark-
ers. The language contains if, ifElse, while constructs
with conditionals {front,left,right}IsClear,
markersPresent, and their negations. repeat allows
for a fixed number of repetitions.

Our work is based on Bunel et al. (2018), which applied a
neural encoder-decoder approach to Karel program synthe-
sis, similar to the work of Devlin et al. (2017) and Parisotto
et al. (2017) which was for a string-editing domain. Bunel
et al. (2018) used both supervised learning with a randomly-
generated synthetic dataset to train their model, as well as a
reinforcement learning-based approach to further improve
the model’s program synthesis accuracy. As part of their
work, they have developed a deep learning architecture for
Karel program synthesis which we use as the basis for our
approach.

3. Approach
3.1. Predicting execution traces from input/output

pairs

In this work, an execution trace refers to an ordered
set of actions: (action1, ..., actionM ). In the case of
Karel, actions are move, turn{Right, Left}, {put,
pick}Marker. For a given original training example
(π, {(I1, O1), ..., (IN , ON )}), we can generate N training
examples (I1, O1, (action1, · · · , actionM )1), · · · , for trace



Improving Neural Program Synthesis with Inferred Execution Traces

turnRight turnRight Input 2 Output 2move

turnRight turnRight Input 1 Output 1

<s> repeat 2 { turnRight

Convolutions → FC 

Execution trace 
embedding

: attention

x5 x5 x5 x5 x5
Maxpool 》
FC 》 Softmax

Maxpool 》
FC 》 Softmax

Maxpool 》
FC 》 Softmax

Maxpool 》
FC 》 Softmax

Maxpool 》
FC 》 Softmax

repeat 2 { turnRight

...

...

}

move

Figure 2. Architecture of TRACE → CODE model. We follow the
architecture in Bunel et al. (2018), but add an execution trace input.

prediction by running π on these I/O pairs and recording
the actions taken by the program.

Figure 1 shows the deep learning model architecture we used
for predictiong execution traces. To encode the input/output
examples, we use a convolutional neural network with a
final fully-connected layer, taken from (Bunel et al., 2018).
To generate the sequence of actions, we use a two-layer
LSTM decoder.

3.2. Synthesizing programs from input/output
examples and execution traces

To create a model which uses both a set of input/output
examples and execution traces for generating the desired
program, we started with the architecture from Bunel et al.
(2018) and extend it to also take the execution trace as an
input. Specifically, we add a bidirectional LSTM responsi-
ble for producing an embedding of the execution trace for
each step in the trace. See Figure 2 for a visual depiction of
the overall model.

To obtain the execution traces for training this model, we
used the I/O→ TRACE model from Section 3.1 to infer a
valid trace for the given I/O pair in the training data. This
trace may deviate from the actions taken by the true program
even if the final state is identical, as certain sequences of
actions can be omitted or permuted without any effect on
the final state. Nevertheless, we will only have access to the
inferred trace at inference time, so it is useful to match the
training and test distributions more closely.

4. Experiments
To train and test our models, we used the same dataset
as (Bunel et al., 2018), from https://bit.ly/
karel-dataset. Each entry in the dataset contains a
Karel program and 6 input/output pairs which satisfy that
program; we show 5 pairs to the model and hold out the last.

When evaluating the model, we use beam search with beam

Table 1. Comparison of our best model with previous work from
(Bunel et al., 2018).

Top-1 Top-50
Exact Gen. Guided Gen.

MLE (Bunel et al., 2018) 39.94% 71.91% − 86.37%
RL beam div opt (Bunel et al., 2018) 32.17% 77.12% − 85.38%

I/O→ CODE, MLE 40.1% 73.5% 84.6% 85.8%
I/O→ TRACE→ CODE, MLE 42.8% 81.3% 88.8% 90.8%

Table 2. Comparing performance on different slices of data.

Slice % of dataset I/O→ CODE I/O→ TRACE→ CODE ∆%

No control flow 26.4% 100.0% 100.0% +0.0%
Only Conditions 15.6% 87.4% 91.0% +3.6%
Only Loops 29.9% 91.3% 94.3% +3.0%
With some control flow 73.6% 79.0% 84.8% +5.8%

Program length 0-15 44.8% 99.5% 99.5% +0.0%
Program length 15-30 40.7% 80.8% 86.9% +6.1%
Program length 30+ 14.5% 48.6% 61.0% +12.4%

size 50. We report Top-K Exact Match, which measures
how often one of the top K output programs of the model
textually matches the original program exactly; Top-K Gen-
eralization, which denotes the fraction of test instances for
which one of the top K output programs will have the correct
behavior across the 5 input/output examples used as specifi-
cation, as well as the held-out 6th example; Top-K Guided
Search, where we consider the top K program outputs in
order, from most likely to least likely, test each candidate
program on the 5 input/output examples that specify the
program, and then test the first one correct on all 5 on the
held-out 6th example.

In Table 1, we compare our best I/O→ TRACE→ CODE
model (created by gluing together I/O → TRACE and
TRACE → CODE) against the previous work of Bunel
et al. (2018). We reimplemented their MLE model (la-
beled as I/O → CODE), obtaining slightly better results
compared to theirs. We note that we did not implement the
RL beam div opt training method of Bunel et al. (2018),
and so our results are all based on MLE training. Neverthe-
less, our I/O→ TRACE→ CODE method outperforms all
others on all metrics, including the best result in Bunel et al.
(2018).

We also analyzed how models performed on various slices of
the test data in Table 2: programs with no control flow (only
actions); programs with conditionals (if or ifElse) but
not loops (repeat or while); programs with loops but no
conditionals; and programs containing at least one control
flow element. We also partitioned the data depending on
the length of the gold program into three buckets. We can
observe that I/O→ TRACE→ CODE improves upon I/O
→ CODE within every slice of the data. The magnitude of
the improvement is most significant on long programs.

https://bit.ly/karel-dataset
https://bit.ly/karel-dataset


Improving Neural Program Synthesis with Inferred Execution Traces

References
Bunel, Rudy, Hausknecht, Matthew, Devlin, Jacob, Singh,

Rishabh, and Kohli, Pushmeet. Leveraging grammar
and reinforcement learning for neural program synthesis.
International Conference on Learning Representations,
2018. URL https://openreview.net/forum?
id=H1Xw62kRZ.

Devlin, Jacob, Uesato, Jonathan, Bhupatiraju, Surya, Singh,
Rishabh, Mohamed, Abdel-rahman, and Kohli, Pushmeet.
Robustfill: Neural program learning under noisy i/o. In
International Conference on Machine Learning, pp. 990–
998, 2017.

Parisotto, Emilio, Mohamed, Abdel-rahman, Singh,
Rishabh, Li, Lihong, Zhou, Dengyong, and Kohli, Push-
meet. Neuro-symbolic program synthesis. In Interna-
tional Conference on Learning Representations, 2017.

Pattis, Richard E. Karel the robot: a gentle introduction to
the art of programming. John Wiley & Sons, Inc., 1981.

Reed, Scott and de Freitas, Nando. Neural programmer-
interpreters. In International Conference on Learning
Representations, 2016. URL http://arxiv.org/
abs/1511.06279.

https://openreview.net/forum?id=H1Xw62kRZ
https://openreview.net/forum?id=H1Xw62kRZ
http://arxiv.org/abs/1511.06279
http://arxiv.org/abs/1511.06279

