
Hierarchical segmentation of graphical interfaces for
Document Object Model reconstruction

Cătălin F. Pert, icas, 1 Mihai S. Baba 1 Homa Davoudi 1 Răzvan V. Florian 1

Figure 1. Detection of graphical elements using a deep convolu-
tional neural network.

1. Introduction
Recently, systems that generate source code from bitmap
renderings of graphical user interfaces have started to be
developed (Beltramelli, 2017). Here we experiment with
a new approach that is able to reconstruct the hierarchical
structure of elements displayed in the graphical layout. As
a case study, we take bitmap snapshots of HTML pages and
infer from those the document object model (DOM), which
can be then converted straightforwardly to HTML.

We train a specialized deep convolutional neural network,
Faster R-CNN (Ren et al., 2015), for segmenting a graph-
ical rendering into bounding boxes (masks) of typical
graphical elements and for classifying these elements. This
first module of our system outputs the masks and classes
for the identified elements (Fig. 1). These masks are fur-
ther processed, with a second module, to re-create the hi-
erarchical structure and the corresponding source code that
generated the graphical layout (Fig. 2).

Differently from Beltramelli (2017), our approach decou-
ples the two learning tasks: (1) inferring the structure of
the graphical interface, and (2) mapping the hierarchical
structure of elements to source code, thus allowing a bet-
ter understanding of how the two modules learn. More-

1Romanian Institute of Science and Technology, Cluj-Napoca,
Romania. Correspondence to: Cătălin F. Pert,icas, <perti-
cas@rist.ro>, Răzvan V. Florian <florian@rist.ro>.

Published at the ICML workshop Neural Abstract Machines &
Program Induction v2 (NAMPI) — Extended Abstract, Stock-
holm, Sweden, 2018. Copyright 2018 by the author(s).

Figure 2. Tree reconstruction based on the hierarchical segmenta-
tion.

over, with the help of segmented masks generated by the
first module, the code generating module can make more
informed decisions. In this study, we focus on a machine
learning implementation of the first task. The second task
is performed with a classical algorithm that creates a tree
from the detected masks.

2. Methodology
The experiments are performed on a synthetic dataset
which is defined through a domain specific language
(DSL). We have a total of 12 HTML elements to detect and
include in the reconstructed DOM. We use the Selenium
WebDriver to retrieve screenshots of our synthetically gen-
erated HTML pages. For acquiring the ground-truth masks
of individual elements, we execute Javascript through the
WebDriver.

2.1. Detection of graphical elements

For the specific case of HTML pages, we need a type of
detection and segmentation of the elements which allows
overlaps and hierarchies. It is very common to have nested
elements, such as an image inside a row div, inside a grid
div. The Faster R-CNN (Ren et al., 2015) can handle such
cases with a Region Proposal Network (RPN). A RPN is a
convolutional network which learns to predict multiple re-
gions of interest (rectangular masks) for a given image. The
model outputs the coordinates and an "objectness" score for
each region. This is done via regression on region coordi-
nates and classification for determining if the data in the
region is an object or background. A second model, the



Hierarchical segmentation of graphical interfaces for DOM reconstruction

IoU threshold Mean average precision (%)

0.70 99.5
0.75 99.4
0.80 99.2
0.85 97.7
0.90 85.3
0.95 45.5

Table 1. Mean average precision of segmentation as a function of
IoU thresholds.

Overlap threshold Accuracy (%)

0.70 92.8
0.75 92.8
0.80 92.8
0.85 91.8
0.90 86.7
0.95 63.6

Table 2. Tree reconstruction accuracy as a function of different
overlap thresholds.

Fast-R-CNN detector, shares the convolution weights with
the RPN and uses its predictions for distinguishing between
different classes of objects and for further detection refine-
ments. We used an ImageNet pre-trained Faster R-CNN
system. Then we trained it with 3 600 screenshots and val-
idated on 400 other screenshots. All screenshots had an
initial size of 900 × 1 200 pixels and were resized to 128
× 128 pixels. The number of epochs was 1 000.

For assessing the quality of the resulting segmentations and
detections, we used the mean average precision over recall
values. Thus, an average precision was computed for pre-
dicting the elements from a sample and then we reported
the mean of these averages across samples. The preci-
sion was computed based on the Intersection over Union
(IoU). Thus, if the IoU between a detected element and the
ground-truth was larger than a threshold and the two ele-
ments had the same class, then it was considered a hit. The
precision, as a function of the IoU threshold, is presented
in Table 1.

2.2. DOM tree reconstruction

For mapping the masks detected at the previous step to a
tree of elements, such as a DOM in the case of HTML, we
have developed a simple conventional, heuristic algorithm.
For all pairs of detected regions, we counted the number of
pixels in the intersection of the two regions. If the intersec-
tion, measured as the percentage of the area of the smaller
region, was larger than an overlap threshold, we consid-
ered the node of the smaller region to be a child of the node
assigned to the larger region. This process leads to the cre-
ation of a directed acyclic graph. However, we would like
to obtain a tree structure, so, if one node has several par-

ent nodes, we only kept the edges to the parent node with
the smallest area, thus creating a tree structure. Finally we
sorted all children nodes by their position in the detected
masks (top to bottom and left to right), such that we could
compare the resulting tree with the ground-truth.

The performance was computed as either a hit or miss,
the same way it was computed by Beltramelli (2017).
The predicted and ground-truth trees needed to be iden-
tical in order to count as a hit. The accuracy of predic-
tion as a function of different overlap thresholds is re-
ported in Table 2. To compare our approach with the ex-
isting one (pix2code) (Beltramelli, 2017), we have run the
pix2code model (using the code at https://github.
com/tonybeltramelli/pix2code) on our synthet-
ically generated dataset and we got an accuracy of 80.0%,
significantly lower than our best result of 92.8%.

3. Conclusions
The segmentation method reports an average precision of
above 97% for an IoU up to 85% (Table 1). The DOM
reconstruction accuracy was more than 92% (Table 2), sig-
nificantly better than the state-of-the-art. Therefore, the hi-
erarchical structure behind graphical interfaces can be re-
constructed with high precision using our approach. The
DOM can be then converted in a straightforward way to
HTML code.

In future work, we will extend these preliminary results
to study the performance of our system on more general
datasets, including real websites. Our system can be used
in the future as part of a software that automatically gener-
ates websites from user-provided mockups.

Acknowledgements
This work was supported by the European Regional De-
velopment Fund and the Romanian Government through
the Competitiveness Operational Programme 2014–2020,
project ID P_37_679, MySMIS code 103319, contract no.
157/16.12.2016.

References
Beltramelli, Tony. pix2code: Generating code from

a Graphical User Interface screenshot, 2017. URL
https://arxiv.org/abs/1705.07962.

Ren, Shaoqing, He, Kaiming, Girshick, Ross, and Sun,
Jian. Faster R-CNN: Towards real-time object detection
with Region Proposal Networks. In Advances in Neu-
ral Information Processing Systems 28 (NIPS 2015), pp.
91–99, 2015.

https://github.com/tonybeltramelli/pix2code
https://github.com/tonybeltramelli/pix2code
https://arxiv.org/abs/1705.07962

