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1. Introduction
Conventional supervised training is a pervasive paradigm
for NLP problems. In this setting, a model is trained to
fit all the training examples and their corresponding tar-
gets. However, while sharing the same surface form of the
prediction task, examples of the same problem may vary
widely. For instance, recognizing textual entailment is a
binary classification problem on whether the hypothesis fol-
lows a given textual statement, but the challenge datasets
consist of a huge variety of inference categories and gen-
res (Dagan et al., 2013; Williams et al., 2017). Similarly,
for a semantic parsing problem that maps natural language
questions to SQL statements, the number of conditions in
a SQL query or the length of a question can vary substan-
tially (Zhong et al., 2017).

The inherently high variety of the examples suggests an
alternative training protocol: instead of learning a mono-
lithic, one-size-fits-all model, it could be more effective
to learn multiple models, where each one is designed for
a specific “task” that covers a group of similar examples.
However, this strategy is faced with at least two difficulties.
As the number of tasks increases, each task will have much
fewer training examples for learning a robust model. In ad-
dition, the notion of “task”, namely the group of examples,
is typically not available in the dataset.

In this work, we explore this alternative learning setting
and address the two difficulties by adapting the meta-
learning framework. Motivated by the few-shot learning sce-
nario (Andrychowicz et al., 2016; Ravi & Larochelle, 2016;
Vinyals et al., 2016), meta-learning aims to learn a general
model that can quickly adapt to a new task given very few
examples without retraining the model from scratch (Finn
et al., 2017). We extend this framework by effectively cre-
ating pseudo-tasks with the help of a relevance function.
During training, each example is viewed as the test example
of an individual “task”, where its top-K relevant instances
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Figure 1. Diagram of the proposed framework. (Upper) we pro-
pose using a relevant function to find a support set S(j)

K from
all training datapoints given a datapoint D′j for constructing a
pseudo-task Tj as in the few-shot meta-learning setup. (Bottom)
We optimize the model parameters θ such that the model can learn
to adapt a new task with parameters θ′j via a few gradient steps on
the training examples of the new task. The model is updated by
considering the test error on the test example of the new task.

are used as training examples for this specific task. A gen-
eral model is trained for all tasks in aggregation. Similarly
during testing, instead of applying the general model di-
rectly, the top-K relevant instances (in the training set) to
the given test example are first selected to update the general
model, which then makes the final prediction. The overview
of the proposed framework is shown in Figure 1.

When empirically evaluated on a recently proposed, large
semantic parsing dataset, WikiSQL (Zhong et al., 2017),
our approach leads to faster convergence and achieves 1.1%–
5.4% absolute accuracy gain over the non-meta-learning
counterparts, establishing a new state-of-the-art result. More
importantly, we demonstrate how to design a relevance func-
tion to successfully reduce a regular supervised learning
problem to a meta-learning problem. To the best of our
knowledge, this is the first successful attempt in adapting
meta-learning to a semantic task.

2. Approach
In this section, we first describe the design of our relevance
function and then the complete algorithm.

2.1. Relevance Function

The intuition behind the design of a relevance function is
that examples of the same type should have higher scores.
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For the questions to SQL problem, we design a simple
relevance function that depends on (1) the predicted type of
the corresponding SQL query and (2) the question length.

There are five SQL types in the WikiSQL dataset: {Count,
Min, Max, Sum, Avg, Select}. We train a SQL type
classifier fsql using SVMs with bag-of-words features of
the input question, which achieves 93.5% training accuracy
and 88.0% test accuracy in SQL type prediction. Another
soft indication on whether two questions can be viewed
as belonging to the same “task” is their lengths, as they
correlate to the lengths of the mapped SQL queries. The
length of a question is the number of tokens in it after nor-
malizing entity mentions to single tokens.1 Our relevance
function only considers examples of the same predicted SQL
types. If examples x(i) and x(j) have the same SQL type,
then their relevance score is 1 − |qlen(x(i)) − qlen(x(j))|,
where qlen calculates the question length. Notice that the
relevance function does not need to be highly accurate as
there is no formal definition on which examples should be
grouped in the same pseudo-task. A heuristic-based function
that encodes some domain knowledge typically works well
based on our preliminary study. In principle, the relevance
function can also be jointly learned with the meta-learning
model, which we leave for future work.

2.2. Algorithm

Algorithm 1 summarizes Pseudo-Task MAML (PT-MAML),
which adapts the MAML meta-learning framework to use a
relevance function. For each training input x(j) and target
y(j), we create a pseudo-task Tj using the top-K relevant
examples as the support set S(j)K (Step 1). The step size α
and the meta step size β are hyper-parameters. LTj

(fθ) is a
loss function that evaluates the error between the prediction
fθ(x

(i)) and target y(i), where x(i),y(i) are an input/output
pair from task Tj . The remaining steps of the algorithm
mimic the original MAML design (Finn et al., 2017), which
updates task-level models (Step 8) and the meta-level gen-
eral model (Step 10) using gradient descent.

3. Experiments
Wang et al. (2017) propose three cross-entropy based loss
functions: “Pointer loss”, which is the cross-entropy be-
tween target index and the chosen index, “Max loss”, which
computes the probability of copying a token v in the input
as the maximum probability of pointers that point to token v,
and “Sum loss”, which computes the probability of copying
a token v in the input as the sum of probabilities of pointers
that point to token v. See Wang et al. (2017) for more detail.

Table 1 shows the experimental results of our model on the
WikiSQL dataset. We select the model based on the best

1Phrases in questions that can match some table cells are treated
as entities.

Algorithm 1 Pseudo-Task MAML (PT-MAML)
Require: Training Datapoints D = {x(j),y(j)}
Require: α, β: step size hyperparameters
Require: K: support set size hyperparameter

1: Construct a task Tj with training examples using a support
set S(j)

K and a test example D′j = (x(j),y(j)).
2: Denote p(T ) as distribution over tasks
3: Randomly initialize θ
4: while not done do
5: Sample batch of tasks Ti ∼ p(T )
6: for all Ti do
7: Evaluate∇θLTi(fθ) using S(j)

K
8: Compute adapted parameters with gradient descent:

θ′i = θ − α∇θLTi(fθ)
9: end for

10: Update θ ← θ − β∇θ
∑
Ti∼p(T ) LTi(fθ′i) using each D′i

from Ti and LTi for the meta-update
11: end while

Model Dev Test
Acclf Accex Acclf Accex

PointerNet (Zhong et al., 2017) 44.1% 53.8% 43.3% 53.3%
Seq2SQL (Zhong et al., 2017) 49.5% 60.8% 48.3% 59.4%
Pointer loss (Wang et al., 2017) 46.8% 52.1% 46.1% 51.8%
Meta + Pointer loss 52.0% 57.7% 51.4% 57.2%
Max loss (Wang et al., 2017) 61.3% 66.9% 60.5% 65.8%
Meta + Max loss 62.1% 67.3% 61.6% 67.0%
Sum loss (Wang et al., 2017) 62.0% 67.1% 61.5% 66.8%
Meta + Sum loss 63.1% 68.3% 62.8% 68.0%

Table 1. Experimental Results on the WikiSQL dataset, where
Acclf represents the logical form accuracy and Accex represents
the SQL execution accuracy. “Pointer loss”, “Max loss”, and
“Sum loss” are the non-meta-learning counterpart from Wang et al.
(2017). “Meta + X” denotes the meta-learning model with learner
“X”.

logical form accuracy on the development set, and compare
our results to augmented pointer network and the Seq2SQL
model (with RL) in (Zhong et al., 2017). Both logical form
accuracy (denoted by Acclf ) that compares the exact SQL
syntax match, and the SQL execution results (denoted by
Accex) are reported. We compare our approach with its
non-meta-learning counterpart using “Pointer loss”, “Max
loss”, and “Sum loss” losses from (Wang et al., 2017). Our
model achieves 1.1%–5.3% and 1.2%–5.4% gains on the
test set logical form and execution accuracy, respectively.

4. Conclusion
In this paper, we propose a new learning protocol that re-
duces a regular supervised learning problem to the few-shot
meta-learning scenario. This is done by effectively creating
pseudo-tasks with the help of a relevance function. When
evaluated on the newly released, large semantic parsing
dataset, WikiSQL, our approach leads to faster convergence
and enjoys 1.1%–5.4% absolute accuracy gains over the non-
meta-learning counterparts, achieving a new state-of-the-art
result.
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