
Imitation Learning of Hierarchical Programs via Variational Inference

Roy Fox * 1 Richard Shin * 1 Pieter Abbeel 1 Ken Goldberg 1 2 Dawn Song 1 Ion Stoica 1

The design of controllers that operate in dynamical systems
to perform specified tasks has traditionally been manual.
Machine learning algorithms enable data-driven generation
of controllers, also called policies or programs, and differ
in how a user may convey what task the controller should
perform. In Imitation Learning (IL), the user demonstrates a
supervisor control signal in a set of execution traces, and the
objective is to train from this data a controller that performs
the computation correctly on unseen inputs.

This paper takes a hierarchical imitation learning approach
to program synthesis. We model the controller as a set of
Parametrized Hierarchical Procedures (PHPs) (Fox et al.,
2018), each of which can invoke a sub-procedure, take a
control action, or terminate and return to its caller. The
PHP model maintains a similar call-stack to that of Neural
Programmers–Interpreters (NPI) (Reed & De Freitas, 2015;
Li et al., 2016), but makes discrete and interpretable proce-
dure calls, rather than smoothing over continuous values.

We consider a dataset of weakly supervised demonstrations,
in which the user provides observation–action trajectories
executed by an expert controller. Inferring hierarchical struc-
ture from weak supervision in which the structure is never
observed is challenging, particularly with deep multi-level
hierarchies. To facilitate discovery of the structure we aug-
ment the dataset with strongly supervised demonstrations
of not only the control actions to take, but also the internal
structure of the program flow that led to these actions. Train-
ing from a mixture of strongly and weakly supervised trajec-
tories can discover highly informative structures from few
strongly supervised trajectories, and leverage these struc-
tures in learning models with good generalization from a
larger amount of weakly supervised trajectories.

We propose to use autoencoders to train hierarchical proce-
dures from weakly supervised data, a method that showed
success in unsupervised learning (Baldi, 2012; Kingma &
Welling, 2013; Rezende et al., 2014; Zhang et al., 2017). We
present a novel method of stochastic variational inference

*Equal contribution 1EECS, 2IEOR, UC Berkeley. Correspon-
dence to: Roy Fox <royf@berkeley.edu>.

Published at the ICML workshop Neural Abstract Machines &
Program Induction v2 (NAMPI) — Extended Abstract, Stockholm,
Sweden, 2018. Copyright 2018 by the author(s).

(SVI), where a hierarchical inference model is trained to ap-
proximate the posterior distribution of the latent hierarchical
structure given the observable traces, and used to impute the
call-stack of hierarchical procedures and guide the training
of the generative model, i.e. the procedures themselves.

The contributions of this paper are: (1) extending the PHP
model with procedures that take arguments; (2) a hierar-
chical variational inference method for training PHPs from
weak supervision. Our method generalizes Stochastic Re-
current Neural Networks (SRNNs) (Fraccaro et al., 2016) to
hierarchical controllers. Compared to level-wise hierarchi-
cal training via the Expectation–Gradient (EG) method (Fox
et al., 2018), our SVI approach applies to deeper hierarchies
and to procedures that take arguments.

Hierarchical Variational Inference. A Partially Observ-
able Markov Decision Process (POMDP) with states st ∈ S ,
observations ot ∈ O, and actions at ∈ A has dynam-
ics p(st+1, ot+1|st, at). A controller with memory state
mt ∈ M has policy pθ(mt, at|mt−1, ot).

We consider weakly supervised demonstrations, which are
observation–action traces ξ = (o0, a0, . . . , oT−1, aT−1),
and strong supervision further augmented by the trajectory
of internal agent states ζ = (m0, . . . ,mT−1). In our ex-
tension of the Parametrized Hierarchical Procedures (PHP)
model (Fox et al., 2018), the memory state is a call-stack
m = [(h0, u0, τ0), . . . , (hd, ud, τd)], each frame in the stack
consisting of the identifier h ∈ H of a PHP, its argument
u ∈ U , and its program counter τ ∈ Z+. A PHP is a
function πh : (u, τ, o) 7→ operation, represented by a
neural network. We repeatedly take a step of the top PHP
hd with inputs (ud, τd, ot), deciding to either (1) terminate
and be popped from the stack; (2) call a sub-procedure
hd+1 with argument ud+1, pushing (hd+1, ud+1, 0) onto
the stack; or (3) perform an action at, setting mt to the state
of the call-stack at that point. The counter τd advances for
each non-terminating PHP step. PHPs generalize nested
options (Sutton et al., 1999) by allowing their operation to
depend on u and τ .

We represent each PHP as a differentiable parametric
model, outputting the log-probability of the PHP step
log πh(operation|u, τ, o). The log-probability of each
time step log pθ(mt, at|mt−1, ot) breaks down into the sum

Imitation Learning of Hierarchical Programs via Variational Inference

of log-probabilities of the PHP steps (pops and pushes) that
transition the call-stack from mt−1 to mt. For strongly su-
pervised demonstrations (ζ, ξ), we can thus use supervised
learning to maximize the log-likelihood

log pθ(ζ, ξ) =

T−1∑
t=0

log pθ(mt, at|mt−1, ot) + const. (1)

In weak supervision, where ζ is latent, we propose an amor-
tized SVI method that replaces the log-likelihood log pθ(ξ)
with its evidence lower bound (ELBO)

Eζ|ξ∼qφ

[
log

pθ(ζ, ξ)

qφ(ζ|ξ)

]
, (2)

where qφ(ζ|ξ) is an inference network that approximates the
computationally infeasible posterior pθ(ζ|ξ) induced by the
generator network, i.e. the actual PHPs.

We propose an architecture for the inference network qφ that
extends SRNNs (Fraccaro et al., 2016) to support our hierar-
chical structure. We start by concatenating each observation–
action pair (ot, at) in ξ, and feeding this sequence into a
bidirectional RNN. The output bt of the RNN at every time
step is a posterior context — a sequence in which each
element is a function of the entire trace ξ, allowing the
decomposition qφ(ζ|ξ) =

∏T−1
t=0 qφ(mt|mt−1, bt).

Using the posterior context, we proceed to define
qφ(mt|mt−1, bt) similarly to pθ(mt, at|mt−1, ot), as a
product of PHP steps, except that posterior PHPs
πhφ(operation|u, τ, bt) are used instead of the usual
PHPs πhθ (operation|u, τ, ot). Since each transition is
conditioned on the true action taken in that time step, pos-
terior PHPs have structural constraints on their allowed
outputs, enforced via masking the output logits (before
log softmax normalization), namely: only ancestors of
the true action in the call-graph can be called; the root PHP
cannot terminate before the final time step; and all PHPs
must terminate at the final time step.

SVI estimates the ELBO (2) by sampling ζ from the infer-
ence network qφ and computing the log probability ratio
of pθ to qφ. We minimize this loss by stochastic gradient
descent on θ and φ. To allow both sampling and gradients
of qφ, we use the relaxed one-hot categorical distribution,
i.e. apply softmax to the logits after adding independent
Gumbel variables (Jang et al., 2016; Maddison et al., 2016).
Sampling is facilitated by the straight-through approxima-
tion, i.e. using argmax for samples and softmax for
log-probabilities and gradient backpropagation. Note that
this prevents gradient backpropagation through PHP steps.

Experiment 1: MNIST Elevator. We evaluate our
method on a new benchmark called MNIST Elevator, de-
signed to test the ability of PHPs to learn to generate argu-
ments for sub-procedures. The root procedure, elevator,

0 20000 40000 60000 80000 100000
sampling steps

0.0

0.2

0.4

0.6

0.8

1.0

er
ro

r r
at

e

0 weakly supervised
1000 weakly supervised
2000 weakly supervised
4000 weakly supervised

0 1000 2000 3000 4000
weakly supervised

0.0

0.2

0.4

0.6

0.8

1.0

er
ro

r r
at

e 0 strongly supervised
500 strongly supervised
1000 strongly supervised
2000 strongly supervised
4000 strongly supervised

Figure 1. Results in the MNIST Elevator domain.

Table 1. Results for the Karel domain
Program A Program B Program C

fully supervised 8 8 8 8 8 8 8 8 8 8 8 8
total 8 16 32 64 8 16 32 64 8 16 32 64

Accuracy 93% 93% 100% 100% 81% 75% 89% 89% 88% 90% 91% 94%

receives as argument the target floor as an MNIST digit (Le-
Cun, 1998). It should then pass the one-hot decoded digit
to a navigate procedure, which decides based on the cur-
rent floor, observed as another MNIST digit, whether to go
up or down. The main challenge in this domain is to train
convolutional neural networks — namely, the navigate
procedure in strong supervision and both procedures in weak
supervision — to classify MNIST digits from only the order
relation between two digits.

We found that pre-training with only strong supervision
is needed to prevent the weak supervision from obscuring
the strong supervision signal. We therefore triggered a late
onset of the weak supervision signal, adding it to the mixture
after 50000 trajectory samples (Figure 1). This immediately
showed a significant improvement in the error rate, i.e. the
fraction of imperfectly reproduced test traces, matching that
of a larger strongly supervised dataset.

Experiment 2: Karel. Karel is an educational pro-
gramming language (Pattis, 1981; Devlin et al., 2017;
Bunel et al., 2018), generating sequences of actions for
a robot in a grid world. Each cell in the grid can con-
tain either a wall, or between 0 and 10 markers. The
robot can move (forward), turnLeft, turnRight,
pickMarker, or putMarker. The observations consist
of leftIsClear, rightIsClear, frontIsClear,
and markersPresent.

Each Karel program has its own hierarchical structure. We
provide strong supervision by automatically parsing a given
Karel program to create one PHP for the top-level function,
and one for each control-flow construct in the program.

Table 1 summarizes our results on three textbook Karel
programs. Overall, we see a benefit from training on more
weakly supervised traces. Notably, for programs A and
B, using 8 strongly supervised demonstrations out of 64
total demonstrations achieved similar results to having all
64 demonstrations strongly supervised, showing effective
learning from weakly supervised demonstrations.

Imitation Learning of Hierarchical Programs via Variational Inference

Acknowledgements

This research is supported in part by DHS Award HSHQDC-
16-3-00083, NSF CISE Expeditions Award CCF-1139158
Berkeley DeepDrive, NSF Grant No. TWC-1409915,
DARPA Grant No. FA8750-17-2-0091, NSF NRI Award
1734633, and gifts from Alibaba, Amazon Web Services,
Ant Financial, CapitalOne, Ericsson, GE, Google, Huawei,
Intel, IBM, Microsoft, Scotiabank, Splunk, VMware,
Siemens, Cisco, Autodesk, Toyota Research, Samsung,
Knapp, and Loccioni Inc.

Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors and
do not necessarily reflect the views of the above organiza-
tions.

References
Baldi, P. Autoencoders, unsupervised learning, and deep

architectures. In Proceedings of ICML Workshop on
Unsupervised and Transfer Learning, pp. 37–49, 2012.

Bunel, R., Hausknecht, M., Devlin, J., Singh, R., and
Kohli, P. Leveraging grammar and reinforcement
learning for neural program synthesis. arXiv preprint
arXiv:1805.04276, 2018.

Devlin, J., Uesato, J., Bhupatiraju, S., Singh, R., Mohamed,
A.-r., and Kohli, P. Robustfill: Neural program learning
under noisy i/o. arXiv preprint arXiv:1703.07469, 2017.

Fox, R., Shin, R., Krishnan, S., Goldberg, K., Song, D., and
Stoica, I. Parametrized hierarchical procedures for neural
programming. In International Conference on Learning
Representations, 2018. URL https://openreview.
net/forum?id=rJl63fZRb.

Fraccaro, M., Sønderby, S. K., Paquet, U., and Winther,
O. Sequential neural models with stochastic layers. In
Advances in neural information processing systems, pp.
2199–2207, 2016.

Jang, E., Gu, S., and Poole, B. Categorical repa-
rameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

LeCun, Y. The mnist database of handwritten digits.
http://yann. lecun. com/exdb/mnist/, 1998.

Li, C., Tarlow, D., Gaunt, A. L., Brockschmidt, M., and
Kushman, N. Neural program lattices. 2016.

Maddison, C. J., Mnih, A., and Teh, Y. W. The concrete
distribution: A continuous relaxation of discrete random
variables. arXiv preprint arXiv:1611.00712, 2016.

Pattis, R. E. Karel the robot: a gentle introduction to the art
of programming. John Wiley & Sons, Inc., 1981.

Reed, S. and De Freitas, N. Neural programmer-interpreters.
arXiv preprint arXiv:1511.06279, 2015.

Rezende, D. J., Mohamed, S., and Wierstra, D. Stochastic
backpropagation and approximate inference in deep gen-
erative models. arXiv preprint arXiv:1401.4082, 2014.

Sutton, R. S., Precup, D., and Singh, S. Between mdps
and semi-mdps: A framework for temporal abstraction in
reinforcement learning. Artificial intelligence, 112(1-2):
181–211, 1999.

Zhang, R., Isola, P., and Efros, A. A. Split-brain autoen-
coders: Unsupervised learning by cross-channel predic-
tion. In CVPR, volume 1, pp. 6, 2017.

https://openreview.net/forum?id=rJl63fZRb
https://openreview.net/forum?id=rJl63fZRb

