
DREAMCODER: Bootstrapping Domain-Specific Languages for
Neurally-Guided Bayesian Program Learning

Kevin Ellis 1 Lucas Morales 1 Mathias Sablé Meyer 1 Armando Solar-Lezama 1 Joshua B. Tenenbaum 1

1. Introduction
Humans can induce programs flexibly across many differ-
ent domains, often from just one or a few examples. If
shown that a text-editing program should map “Jane Morris
Goodall” to “J. M. Goodall”, we can guess it maps “Richard
Erskine Leakey” to “R. E. Leakey”; if the first input mapped
to “Dr. Jane” or “Goodall, Jane”, we might guess the latter
mapped to “Dr. Richard” or “Leakey, Richard”, respectively.

The FlashFill system (Gulwani, 2011) embedded in Mi-
crosoft Excel solves problems such as these and is probably
the best known practical program-induction algorithm, but
researchers have had many successes: handwriting recog-
nition and generation (Lake et al., 2015); question answer-
ing (Johnson et al.); and robot motion planning (Devlin
et al., 2017). These systems work in different ways, but
most hinge upon a carefully engineered Domain Specific
Language (DSL). DSLs constrain the space of programs
with strong prior knowledge in the form of a restricted set
of primitives tuned to the domain: for text editing, these are
operations like appending and splitting on characters.

In this work, we consider the problem of building agents that
learn to solve program induction tasks, and also the prob-
lem of acquiring the prior knowledge necessary to quickly
solve these tasks in a new domain; see Table 1. Our solu-
tion is an algorithm that grows or boostraps a DSL while
jointly training a neural network to help write programs in
the increasingly rich DSL. In contrast to computer assisted
programming (Solar Lezama, 2008) or genetic program-
ming (Koza), our goal is not to automate software engi-
neering, or to synthesize large bodies of code starting from
scratch. Ours is a basic AI goal: capturing the human ability
to learn to think flexibly and efficiently in new domains —
to learn what you need to know about a domain so you don’t
have to solve new problems starting from scratch.

1MIT. Correspondence to: Kevin Ellis <ellisk@mit.edu>.

Published at the ICML workshop Neural Abstract Machines &
Program Induction v2 (NAMPI) — Extended Abstract, Stockholm,
Sweden, 2018. Copyright 2018 by the author(s).

2. The DREAMCODER Algorithm
We are inspired by several ways that skilled human program-
mers have learned to code: Skilled coders build libraries
of reusable subroutines shared across related programming
tasks, that can be composed to generate increasingly com-
plex subroutines. In text editing, a good library should
support routines for splitting on characters, but also special-
ize these routines to split on frequent delimiters like spaces.
Skilled coders also learn to recognize which programming
idioms and library routines are useful for solving the task at
hand, even if they cannot instantly work out the details.

Our algorithm is called DREAMCODER because it incorpo-
rates these insights into a novel kind of “wake-sleep” learn-
ing (c.f. (Hinton et al., 1995)), iterating between “wake”
and “sleep” phases to achieve three goals: finding programs
that solve tasks; growing a DSL by discovering and reusing
domain-specific subroutines; and training a neural network
that guides search for programs in the DSL. The learned
DSL effectively encodes a prior on programs likely to solve
tasks in the domain, while the neural net looks at a spe-
cific task and produces a “posterior” for programs likely to
solve that specific task. The neural network thus functions
as a recognition model supporting a form of approximate
Bayesian program induction, jointly trained with a genera-
tive model for programs encoded in the DSL, in the spirit
of the Helmholtz machine (Hinton et al., 1995). The recog-
nition model ensures that searching for programs remains
tractable even as the DSL expands.

Concretely, our algorithm iterates through three cycles:
Wake Cycle: Given a set of tasks, we search for compact
programs that solve these tasks, taking the simple strategy
of enumerating programs written in the current DSL in order
of their probability according to the neural network.
Sleep-G Cycle: Here we grow the DSL (Generative model),
allowing the agent to more compactly write programs in the
domain. We modify the DSL by discovering regularities
across programs found during waking, compressing them
to distill out common code fragments. The technical ma-
chinery behind this DSL learning comes from a formalism
known as Fragment Grammars (O’Donnell, 2015).
Sleep-R Cycle: This trains a neural net (Recognition
model) to predict a distribution over programs in the cur-

Bootstrapping Domain-Specific Languages for Neurally-Guided Bayesian Program Learning

List Functions Text Editing Symbolic Regression

Pr
og

ra
m

s
&

Ta
sk

s [7 2 3]→[7 3]
[1 2 3 4]→[3 4]
[4 3 2 1]→[4 3]
f(`) =(f1 ` (λ (x)

(> x 2)))

[2 7 8 1]→8
[3 19 14]→19
f(`) =(f2 `)

[7 3]→False
[3]→False

[9 0 0]→True
[0]→True

[0 7 3]→True
f(`) =(f3 ` 0)

+106 769-438→106.769.438
+83 973-831→83.973.831
f(s) =(f0 "." "-"

(f0 "." " "
(cdr s)))

Temple Anna H →TAH
Lara Gregori→LG
f(s) =(f2 s)

f(x) =(f1 x) f(x) =(f6 x)

f(x) =(f4 x) f(x) =(f3 x)

D
SL

f1(`,p) = (foldr ` nil (λ (x a)
(if (p x) (cons x a) a)))

(f1: Higher-order filter function)
f2(`) = (foldr ` 0 (λ (x a)

(if (> a x) a x)))
(f2: Maximum element in list `)

f3(`,k) = (foldr ` (is-nil `)
(λ (x a) (if a a (= k x))))

(f3: Whether ` contains k)

f0(s,a,b) = (map (λ (x)
(if (= x a) b x)) s)

(f0: Performs character substitution)
f1(s,c) = (foldr s s (λ (x a)

(cdr (if (= c x) s a))))
(f1: Drop characters from s until c reached)

f2(s) = (unfold s is-nil car
(λ (z) (f1 z " ")))

(f2: Abbreviates a sequence of words)

f0(x) = (+ x real)
f1(x) = (f0 (* real x))
f2(x) = (f1 (* x (f0 x)))
f3(x) = (f0 (* x (f2 x)))
f4(x) = (f0 (* x (f3 x)))

(f4: 4th order polynomial)
f5(x) = (/ real x)
f6(x) = (f5 (f0 x))

(f6: rational function)

Table 1: Top: Tasks from three domains we apply our algorithm to, each followed by the programs DREAMCODER discovers
for them. Bottom: Several examples from learned DSL. Notice that learned DSL primitives can call each other, and that
DREAMCODER rediscovers higher-order functions like filter (f1 under List Functions)

rent DSL, in the spirit of “amortized” inference (Le et al.,
2017). The network is trained, conditioned on a task, to
assign high probability to programs that have high prior
probability according to the DSL, while also assigning high
likelihood to the task at hand, thus amortizing the cost of
finding programs with high posterior probability.

3. Experiments
We apply DREAMCODER to list processing and text editing,
using a recurrent network for the recognition model, initially
providing the system with generic sequence manipulation
primitives: foldr, unfold, if, map, length, index, =,
+, -, 0, 1, cons, car, cdr, nil, and is-nil.

List Processing: Synthesizing programs that manipulate
data structures is a widely studied problem in the program-
ming languages community (Feser et al., 2015). We con-
sider this problem within the context of learning functions
that manipulate lists, creating 236 human-interpretable list
manipulation tasks (Table 1, left). In solving these tasks, the
system composed 38 new subroutines, and rediscovered the
higher-order function filter (f1 in Table 1, left).

Text Editing: Synthesizing programs that edit text is a
classic problem in the programming languages and AI lit-
eratures (Gulwani, 2011; Lau, 2001). This prior work uses
hand-engineered DSLs. Here, we instead start out with
generic sequence manipulation primitives and recover many
of the higher-level building blocks that have made these
other systems successful.

We trained our system on 109 automatically-generated text
editing tasks. After three wake/sleep cycles, it assembles
a DSL containing a dozen new functions (Fig. 1, center)
solving the training tasks. We also tested, but did not train,

Figure 1: Recognition model input for
symbolic regression. DSL learns subrou-
tines for polynomials (top rows) and ra-
tional functions (bottom) while the recog-
nition model jointly learns to look at a
graph of the function (left) and predict
which learned subroutines best explain
the observation.

on the 108 text editing problems from the SyGuS (Alur
et al., 2016) program synthesis competition. Before any
learning, DREAMCODER solves 3.7% of the problems with
an average search time of 235 seconds. After learning, it
solves 74.1%, and does so much faster, solving them in an
average of 29 seconds. As of the 2017 SyGuS competition,
the best-performing algorithm solves 79.6% of the problems.
But, SyGuS comes with a different hand-engineered DSL
for each text editing problem. Here we learned a single
DSL that applied generically to all of the tasks, and perform
comparably to the best prior work.

Symbolic Regression: Programs from visual input. We
apply DREAMCODER to symbolic regression problems.
Here, the agent observes points along the curve of a func-
tion, and must write a program that fits those points. We
initially equip our learner with addition, multiplication, and
division, and task it with solving 100 problems, each either
a polynomial or rational function. The recognition model
is a convnet that observes an image of the target function’s
graph (Fig. 1) — visually, different kinds of polynomials
and rational functions produce different kinds of graphs, and
so the convnet can look at a graph and predict what kind of
function best explains it.

Bootstrapping Domain-Specific Languages for Neurally-Guided Bayesian Program Learning

0 1 2 3 4 5
Iteration

0

20

40

60

80

100
%
 S

ol
ve

d
(s
ol
id
)

0
20
40
60
80
100

So
lv
e
tim

e
(d
as

he
d)

List Functions

0 1 2 3 4

Iterat ion

0

20

40

60

80

100

%

S
o

lv
e

d
 (

s
o

li
d

)

0

50

100

150

200

250

S
o

lv
e

 t
im

e
 (

d
a

s
h

e
d

)

Text Edit ing

0 1 2 3 4 5

Iterat ion

0

20

40

60

80

100

%

S
o

lv
e

d
 (

s
o

li
d

)

0

20

40

60

80

S
o

lv
e

 t
im

e
 (

d
a

s
h

e
d

)

Sym bolic Regression

Figure 2: Learning curves for DREAMCODER both with (in orange) and without (in teal) the recognition model. Iterations:
wake/sleep cycles. Solid lines: % holdout testing tasks solved w/ 10m timeout. Dashed lines: Average solve time.

4. Discussion
We contribute an algorithm, DREAMCODER, that learns to
program by bootstrapping a DSL with new domain-specific
primitives that the algorithm itself discovers, together with
a neural recognition model that learns to efficiently deploy
the DSL on new tasks. One future direction is DSL meta-
learning: can we find a single universal primitive set that
could bootstrap DSLs for new domains, including the do-
mains considered here, but also many others?

References
Alur, Rajeev, Fisman, Dana, Singh, Rishabh, and Solar-

Lezama, Armando. Sygus-comp 2016: results and analy-
sis. arXiv preprint arXiv:1611.07627, 2016.

Devlin, Jacob, Bunel, Rudy R, Singh, Rishabh, Hausknecht,
Matthew, and Kohli, Pushmeet. Neural program meta-
induction. In NIPS, 2017.

Feser, John K, Chaudhuri, Swarat, and Dillig, Isil. Synthe-
sizing data structure transformations from input-output
examples. In PLDI, 2015.

Gulwani, Sumit. Automating string processing in spread-
sheets using input-output examples. In ACM SIGPLAN
Notices, volume 46, pp. 317–330. ACM, 2011.

Hinton, Geoffrey E, Dayan, Peter, Frey, Brendan J, and Neal,
Radford M. The” wake-sleep” algorithm for unsupervised
neural networks. Science, 268(5214):1158–1161, 1995.

Johnson, Justin, Hariharan, Bharath, van der Maaten, Lau-
rens, Fei-Fei, Li, Zitnick, C Lawrence, and Girshick,
Ross. Clevr: A diagnostic dataset for compositional lan-
guage and elementary visual reasoning. In CVPR.

Koza, John R.

Lake, Brenden M, Salakhutdinov, Ruslan, and Tenenbaum,
Joshua B. Human-level concept learning through prob-
abilistic program induction. Science, 350(6266):1332–
1338, 2015.

Lau, Tessa. Programming by demonstration: a machine
learning approach. PhD thesis, 2001.

Le, Tuan Anh, Baydin, Atlm Gne, and Wood, Frank. Infer-
ence Compilation and Universal Probabilistic Program-
ming. In AISTATS, 2017.

O’Donnell, Timothy J. Productivity and Reuse in Language:
A Theory of Linguistic Computation and Storage. The
MIT Press, 2015.

Solar Lezama, Armando. Program Synthesis By Sketching.
PhD thesis, 2008.

