
Auto-encoding Logic Programs

Sebastijan Dumančić 1 Tias Guns 2 Wannes Meert 1 Hendrik Blockleel 1

1. Introduction
Although deep learning (Goodfellow et al., 2016) has
achieved a tremendous progress over the last decade, the
majority of the tasks addressed focus on signal data such
as images, speech and text. Ubiquitous relational data, e.g.
biological and social networks, has only recently started
to receive attention. Learning and reasoning with such
complex data has typically been in the domain of logic-
based approaches to Artificial intelligence such as Statis-
tical relational learning (SRL) (Getoor & Taskar, 2007;
de Raedt et al., 2016). Exceptions to that are knowledge
graph embedding (Nickel et al., 2016) and differentiable
interpreter/programmer (Rocktäschel & Riedel, 2017; Reed
& de Freitas, 2016) approaches. Both lines of research
focus on developing ways to represent relational data (or
programs) in Euclidean spaces or distributed amongst the
weights of a neural network.

Though both directions have demonstrated great potential,
they also exhibit several limitations. First, representing
concepts and reasoning in Euclidean space or distributing
it amongst the weights looses the interpretability of logical
representation and clarity of its reasoning. Second, it is
difficult to know how much of the expressive power of logic
can be captured by vectorizing it. Third, these methods are
often data-hungry and have problems generalizing beyond
the training data.

Therefore, retaining predicate logic as representation lan-
guage for deep learning primitives offers several benefits.
First, predicate logic is a full-fledged programming language
and thus provides a language that does not introduce any
limitations upfront. Second, it is easily interpretable and
modular which might allow for efficient learning strategies.
Third, logic-based learning approaches are typically ex-
tremely data-efficient requiring only a few examples. Fourth,
having a domain knowledge specified in the logical format
allows us to pose questions about anything in a domain, and

1Department of CS, KU Leuven, Belgium 2Department
of Business Technology and Operations, VUB, Bel-
gium. Correspondence to: Sebastijan Dumančić <sebasti-
jan.dumancic@cs.kuleuven.be>.

Published at the ICML workshop Neural Abstract Machines &
Program Induction v2 (NAMPI) — Extended Abstract, Stockholm,
Sweden, 2018. Copyright 2018 by the author(s).

thus don’t have to commit to the specific target in advance.
A disadvantage of logic as the representation language is
its symbolic nature, which does not allow us to leverage ex-
tensive computational infrastructure developed within deep
learning. However, that complexity can often be dealt with
in practice, as done within the Inductive logic programming
(de Raedt, 2008) and satisfiability communities1 (Biere et al.,
2009).

This works exploits the above-outlined benefits and intro-
duces auto-encoding logic programs (ALPs), which im-
plement both the encoder and decoder functions as logic
programs. We focus on auto-encoders (Hinton & Salakhutdi-
nov, 2006) as they have proven to be an extremely versatile
deep learning primitive applicable to many different settings
(un-, semi- and supervised) (Bengio et al., 2006; Kingma
et al., 2014; Maas et al., 2012; Vincent et al., 2008; Kingma
& Welling, 2014; Bengio et al., 2006) by leveraging a sim-
ple learning principle. This versatility allows one to use
the same representation learning component for a variety of
SRL learning tasks.

2. Auto-encoding logic program
This section explains individual components of ALPs, illus-
trated in Figure 1.

Data The first question that arises is that of the data represen-
tation format. We build upon standard SRL approaches and
assume the data is given as a collection of logical atoms F –
a predicate symbol applied to terms, i.e. constants or vari-
ables. For example, in the atom mother(anna,dirk)
mother/2 is a predicate (relation) between two (/2) con-
stants anna and dirk. Data vocabulary V consists of all
predicate P and constant C symbols defined in the data. By
convention, all provided atoms are true, and everything else
is false.

Encoder and Decoder Encoder E and decoder D function
are implemented and learned as logic programs, i.e., a set
of clauses. A clause is a logical formula of the form h
:- b1,...,bn, where h and bi are (non-ground) atoms
or their negations. h is called head atom and bi are body
atoms. The bodies of encoder clauses consist of predicates
in P , and the corresponding heads define a new set of latent

1http://beyondnp.org

http://beyondnp.org


Auto-encoding Logic Programs

Input: mother(anna,dirk). female(anna). father(tom,dirk). male(tom).

Encoder: latent1(X,Y) :- mother(X,Y);father(X,Y).

latent2(X) :- female(X).

Latent rep.: latent1(anna,dirk). latent1(tom,dirk). latent2(anna).

Decoder: mother(X,Y) :- latent1(X,Y),latent2(X).

female(X) :- latent2(X).

father(X,Y) :- latent1(X,Y),not(latent2(X)).

male(X) :- not(latent2(X)).

Output: mother(anna,dirk). female(anna). father(tom,dirk). male(tom).

Figure 1. Illustration of an auto-encoding logic program (in Prolog format) for a family domain

predicates H. The bodies of decoder clauses consist of
predicate inH and heads are in P .

Reconstruction We define the symbolic reconstruction loss
s(F , E ,D) as a sum of the number of non-reconstructed
atoms in D and the number of falsely reconstructed atoms.

Constraints The key ingredient of traditional auto-encoders
is imposing bottleneck constraints on the latent representa-
tion. We do the same by imposing the constraint that the
number of facts in the latent representation has to be smaller
than the number of the provided facts. We also impose
different constraints on interaction between encoder and
decoder clauses.

Learning ALPs The task of learning ALPs as then finding
the set of encoder and decoder clauses the minimizes the
reconstruction loss s(·, ·, ·).

2.1. Learning as constraint optimization

To find the encoder and decoder clauses, we cast learning
ALPs as a constraint optimization problem (Rossi et al.,
2006). Intuitively, we construct possible encoder and de-
coder clause candidates and pick a small subset of those
that minimizes the reconstruction loss. To find candidate
clauses, we rely on the notion of language bias (Blockeel,
2017) given as a set of syntactic constraints on candidate
clauses, e.g., all conjunctive formulas containing at most 3
literals and at most 2, existentially quantified, variables.

Decision variables are Boolean variables indicating
whether a certain encoder/decoder clause is selected or not.

Soft constraints indicate how facts can be reconstructed.
For instance, if fact f is reconstructed by decoder clauses
dcN−M , we introduce the constraints

∨M
i=N dci ⇔ rf , say-

ing that rf is true if at least of the the decoder clauses
dcN−M is selected.

Objective function is then formulated as minimizing the
number of unsatisfied soft constraints and the number of
soft constraints associated with falsely reconstructed atoms.

Hard constraints are used to make the latent representation
compressive and enforce certain properties of latent repre-
sentation, such as requiring that all P are reconstructable,
stating that if two decoder clauses reconstruct identical facts
not both can be selected at the same time, and so on.

3. Preliminary experiments
We have conduced preliminary experiments in order to see
whether learning from latent representation created by ALPs
is beneficial. We focus on learning generative modelling
and evaluate whether the model learned on the latent data
representation explains data better than the model learned
on the original data representation. Therefore, the baseline
model simply learns a generative Markov logic Network
(MLN) (Richardson & Domingos, 2006) on the original data
representation, while the latent MLN learns a generative
model on the ALP-induced latent representation and uses
the decoder to decode latent facts back to the original space.

We learn ALPs by limiting the length of clauses to 2 or 3
atoms; if more complexity is needed, it can be achieved by
stacking several layers of ALPs. The number of latent facts
is limited to x% of the number of facts in the original data,
with x ∈ {0.5, 0.7}. We also impose constraints stating that
(1) if a clause is a refinement of another clause, they cannot
both be selected, (2) if two decoder clauses cover the same
set of fact, they cannot both be a part of the solution, (3)
every predicate from P should have at least one decoder
clause, and (4) if one decoder clause reconstructs a subset
of facts of another decoder clause, at most one can be a part
of the solution.

We compared the AUC-PR scores of the baseline and la-
tent MLN on two standard SRL datasets - WebKB and
Cora entity resolution (Singla & Domingos, 2006). The
results indicate that latent representation created this way
captures useful patterns that allow to better capture domain
knowledge, resulting in better AUC-PR scores of the la-
tent model. Even the most limiting version of ALP using
only the clauses with 2 atoms is enough the improve the



Auto-encoding Logic Programs

performance.

References
Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H.

Greedy layer-wise training of deep networks. In Pro-
ceedings of the 19th International Conference on Neural
Information Processing Systems, NIPS’06, pp. 153–160,
Cambridge, MA, USA, 2006. MIT Press.

Biere, A., Biere, A., Heule, M., van Maaren, H., and Walsh,
T. Handbook of Satisfiability: Volume 185 Frontiers
in Artificial Intelligence and Applications. IOS Press,
Amsterdam, The Netherlands, The Netherlands, 2009.

Blockeel, H. Bias specification language. In Encyclopedia
of Machine Learning and Data Mining, pp. 125–128.
2017. doi: 10.1007/978-1-4899-7687-1 73.

de Raedt, L. Logical and Relational Learning: From ILP
to MRDM (Cognitive Technologies). Springer-Verlag,
Berlin, Heidelberg, 2008. ISBN 3540200401.

de Raedt, L., Kersting, K., Natarajan, S., and Poole, D.
Statistical Relational Artificial Intelligence: Logic, Prob-
ability, and Computation. Synthesis Lectures on Artificial
Intelligence and Machine Learning. Morgan & Claypool
Publishers, 2016.

Getoor, L. and Taskar, B. Introduction to Statistical Re-
lational Learning (Adaptive Computation and Machine
Learning). The MIT Press, 2007. ISBN 0262072882.

Goodfellow, I., Bengio, Y., and Courville, A. Deep Learning.
MIT Press, 2016.

Hinton, G. E. and Salakhutdinov, R. R. Reducing the
dimensionality of data with neural networks. Science,
313(5786):504–507, 2006. ISSN 0036-8075. doi:
10.1126/science.1127647.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. In Proceedings of the Second International Con-
ference on Learning Representations (ICLR 2014), April
2014.

Kingma, D. P., Mohamed, S., Jimenez Rezende, D., and
Welling, M. Semi-supervised learning with deep gener-
ative models. In Ghahramani, Z., Welling, M., Cortes,
C., Lawrence, N. D., and Weinberger, K. Q. (eds.), Ad-
vances in Neural Information Processing Systems 27, pp.
3581–3589. Curran Associates, Inc., 2014.

Maas, A., Le, Q. V., O’Neil, T. M., Vinyals, O., Nguyen,
P., and Ng, A. Y. Recurrent neural networks for noise
reduction in robust asr. In INTERSPEECH, 2012.

Nickel, M., Murphy, K., Tresp, V., and Gabrilovich, E.
A review of relational machine learning for knowledge
graphs. Proceedings of the IEEE, 104(1):11–33, Jan 2016.
ISSN 0018-9219. doi: 10.1109/JPROC.2015.2483592.

OscaR Team. OscaR: Scala in OR, 2012. Available from
https://bitbucket.org/oscarlib/oscar.

Reed, S. and de Freitas, N. Neural programmer-interpreters.
In International Conference on Learning Representations
(ICLR), 2016.

Richardson, M. and Domingos, P. Markov logic networks.
Mach. Learn., 62(1-2):107–136, February 2006. ISSN
0885-6125.

Rocktäschel, T. and Riedel, S. End-to-end differentiable
proving. In Guyon, I., Luxburg, U. V., Bengio, S., Wal-
lach, H., Fergus, R., Vishwanathan, S., and Garnett, R.
(eds.), Advances in Neural Information Processing Sys-
tems 30, pp. 3788–3800. Curran Associates, Inc., 2017.

Rossi, F., Beek, P. v., and Walsh, T. Handbook of Constraint
Programming (Foundations of Artificial Intelligence). El-
sevier Science Inc., New York, NY, USA, 2006. ISBN
0444527265.

Singla, P. and Domingos, P. Entity resolution with markov
logic. In Proceedings of the Sixth International Confer-
ence on Data Mining, ICDM ’06, pp. 572–582, Washing-
ton, DC, USA, 2006. IEEE Computer Society. ISBN
0-7695-2701-9. doi: 10.1109/ICDM.2006.65. URL
https://doi.org/10.1109/ICDM.2006.65.

Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A.
Extracting and composing robust features with denoising
autoencoders. In Proceedings of the 25th International
Conference on Machine Learning, ICML ’08, pp. 1096–
1103, New York, NY, USA, 2008. ACM. ISBN 978-1-
60558-205-4. doi: 10.1145/1390156.1390294.

https://doi.org/10.1109/ICDM.2006.65

