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1. Introduction
Transforming graphical designs into HTML code is a typical
task of front-end web development which requires an expert
programmer to spend a considerable amount of time, while
this time can be dedicated to more creative problem-solving
tasks where the machine intelligence is still far from the
human intelligence. Automating HTML code generation
from a design mock-up can serve as a solution to this prob-
lem. More recently, there have been several attempts on
using machine learning techniques, especially deep neural
networks, for automatic program synthesis. Among those,
some works are devoted to the structured markup languages
(Deng et al., 2016). However, there is still a long way to
go before reaching to a satisfactory code generator. Here
we introduce a new approach for generating HTML codes
from a given web-page image which uses a reinforcement
learning technique.

Most recent learning-based program synthesis methods re-
quire to be provided with programs generated by program-
mers as ground-truth. Following this supervised paradigm,
the model, at best, will learn to produce programs similar
to those in the training set, which, considering the inherent
flexibility of programming, may not always be the most effi-
cient ones. If each of two programmers write a program for
solving the same problem, it is very unlikely that the source
code of the two programs will be identical. The programs
might be different in terms of their underlying algorithms,
structure, applied operations and variable names. In our
proposed model, instead of the ground-truth provided by
humans, the supervision is carried on by a reward signal.
Based on how the reward is designed, an agent learns to
generate programs of desired characteristics by searching
through all possible programs.

In addition to bypassing the supervision, the proposed RL
based approach also solves a main drawback of typical su-
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pervised code generation methods where the inconsistency
between training and testing modes is overlooked (Bah-
danau et al., 2016). Considering the code generation task as
an instance of sequence generation, a prevalent method is to
train an RNN to generate tokens one by one conditioned on
all tokens generated so far. Applying maximum likelihood
framework for learning, these models will learn the condi-
tional probability of a correct token given all the previous
tokens as appeared in the ground truth. However, in the test
run, the agent has only access to its own previous predic-
tions but not the ground truth. This inconsistency between
training and testing models becomes more problematic in
processing of long sequences, like source code, due to the
higher compounding of errors. In a RL framework, instead
of maximizing the likelihood of the tokens being generated
by that imprecise conditional probability, the agent is trained
to directly maximize a desired evaluation metric, given as a
reward signal. In our task, the agent is trained to generate a
code that is rendered to the best match to the goal web page.

In our model, the generator is an agent that takes a web
page image as an input and generates an HTML code that,
being rendered in the browser, yields the most similar image
- ideally the exact match-to the goal image. We employ
a reinforcement learning approach where the agent learns
to generate one token in each time step. To simplify the
problem, we design a DSL to generate simple HTML pages,
and the agent is trained to generate the DSL token. The
reward signal is computed by running the generated code in
the browser and comparing the rendered image with the goal
image. In this way, only a browser is required to compute
the reward, which makes the whole process independent
of any other supervisory data such as source code training
samples.

During the training, the agent writes a code for the goal web
page based on its current policy, checks the reward to see
if the written code gives the desired result, and modifies its
policy accordingly.

During the test phase, the trained agent can generate the
HTML code for an unseen image running the trained pol-
icy network. Nevertheless, a remarkable property of the
proposed approach is that the agent has the chance of im-
proving the result by adapting itself specifically to the test
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image. This can be done by searching more as the proposed
reward signal would still be available during the test, if there
is access to the browser. With the reward being in hand, the
agent can continue the learning process on the test time until
it reaches to the exact match.

2. Model architecture
Given an image of the web page Im, the goal is to gener-
ate its corresponding HTML code (a sequence of tokens:
t1, t2, ..., tn). In this way, the set of all possible actions
the agent can take is the set of all possible tokens in the
programming language. The state at time step t is com-
posed of the goal image Im and the codes predicted so far:
t1, t2, ..., tn). However, instead of using the code directly,
we first render the partially generated code in the browser,
capture the screenshot of the rendered webpage and use the
rendered image, Ir, alongside the goal image Im as the cur-
rent state. This is to make it easier for the agent to compare
the rendered image with the goal image.

The whole structure of the model is depicted in Figure 1.
The model contains a “policy network” and a “value net-
work” built on top of a unit base network, which encodes
the current state to be fed into the following networks. The
base network contains two Convolution Neural Networks
(CNNs) to encode the visual information of the goal and
rendered images. The feature vectors computed for the goal
image and the rendered images are then concatenated and
fed into the following multilayer feed forward neural net-
works, one dedicated to the policy and the other dedicated
to the value function.

Figure 1. The architecture of our model.

To train the model parameters, the agent is provided with a
reward value at each time step, which compares the rendered
image up to that step with the goal image. The reward signal
is computed as the negative squared L2 distance between
two feature vectors of goal and rendered images, computed
in the base network using CNN networks.

These two networks are trained together through a Monte
Carlo Tree Search (MCTS) algorithm (Silver et al., 2016),

(a) Web page

(b) code

Figure 2. A sample from the generated data set.

to find the best policy of generating the next token in each
time step given the current state. MCTS is a probabilistic
approach to building a decision tree, and searching in that
tree for the best action to take. As we use the pre-trained
network for the CNN layers, their weights are not included
among the training parameters.

When updating the parameters of the network, it should be
noted that there are enough data from executing MCTS on
various images. In order to make a more efficient use of data,
we propose to choose the training samples more sensibly.
In updating the network weights, the most appropriate data
are the one gathered in a successful episode, whereas, most
often, an episode ends up with an incorrect generated HTML
code. To handle this, instead of using the most recent data,
we use the replay buffer with a minor modification, which
only preserves the data of successful episodes observed so
far. This way, the policy network is not mislead by the failed
experiments. This buffer is continuously updated and forms
half of the updating data. The other half is filled with the
recent data obtained. This trick improves the learning speed
significantly.

3. Experiment
We already have conducted a number of experiments on
the synthesized database built based on a DSL designed to
generate simple HTML pages. The DSL has 18 tokens and
the length of HTML codes can reach up to 40 tokens. An
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example of a webpage image along with it’s corresponding
code is shown in Figure 2. The work being under progress,
the final results will be reported in the future publications.
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