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1. Introduction

A hallmark of human cognition is the ability to continually
acquire and compress observations of the world into mean-
ingful, predictive theories without explicit supervision. This
allows us to quickly understand new concepts and make use-
ful predictions about them. For example, we might represent
our knowledge of animals in a taxonomic hierarchy. Using
such a hierarchy allows us to infer a whole range of new
facts about an individual, observing that a Harpy Eagle is a
type of Eagle allows us to immediately deduce that a Harpy
eagle can fly and breathe. How such representations can be
learned from raw observations has been a key problem in
semantic knowledge acquisition going back at least to the
1960’s in the work of (Collins & Quillian, 1969), with sym-
bolic, bayesian, and neural approaches proposed (Rogers &
McClelland, 2004; Hinton, 1986; Yarden et al., 2008). We
follow (Yarden et al., 2008) in proposing Theory Learning
as a way to address three questions in the development of
a solution: (1) how can we induce logical rules from the
observations? (2) how can we learn a small set of core facts
from which we can infer the observations (and more), and
(3) how can this be done without explicit supervision?

Symbolic and neural solutions each have complementary
strengths and weaknesses. Symbolic models can learn from
very little data and generalize well but are brittle and prone
to failure when the observations are noisy as they inevitably
are in the real world. They also provide little insight into
how their symbolic structure might be learned. Neural mod-
els are generally robust to such noise but prone to over-fitting
and require large amounts of data to train. They are also
difficult to interpret. There is a long history of research in
neural-symbolic systems which try to get the best of both
worlds, recent examples include (Yang et al., 2017) and
(Serafini & Garcez, 2016), for a survey see (Besold et al.,
2017). Two relevant recent examples for logical rule induc-
tion include (Evans & Grefenstette, 2018) and (Rocktischel
& Riedel, 2017). Both of these approaches offer differen-

"Brain and Cognitive Sciences, MIT, Cambridge, USA. 2IBM,
Yorktown Heights, NY USA. 3Computer Science, UCL, London,
UK. . Correspondence to: A. Campero <campero@mit.edu>.

Published at the ICML workshop Neural Abstract Machines &
Program Induction v2 (NAMPI) — Extended Abstract, Stockholm,
Sweden, 2018. Copyright 2018 by the author(s).

Tim Klinger> Josh Tenenbaum ! Sebastian Riedel ®

tiable models which can be trained using gradient descent,
but are interpretable and generalize well with little data. But
both suffer scalability issues: (Evans & Grefenstette, 2018)
because they must enumerate all pairs of possible rules and
(Rocktischel & Riedel, 2017) because they must build a
proof tree which grows exponentially in the depth.

In this paper we present a new rule induction network for
logical theory acquisition which can solve Inductive Logic
Programming (ILP) tasks but can also take a set of observed
facts and learn to compress them into a small set of core
facts in addition to the logical rules. The network is neuro-
symbolic in the sense that it can learn the logical structure
underlying a set of observed facts using dense vector rep-
resentations for both the atoms of the rules and for the
predicates of the facts. The network implements forward
chaining and soft unification to recover the observations
from the facts under application of the rules. After K steps
of forward inference, the consequences are compared to the
initial observations and the rules and core facts are encour-
aged towards representations that more faithfully generate
the observations through inference. By encouraging sparsity
in the set of core learned facts it can be trained to both induce
and compress. Importantly, this gives the model a capability
lacking in many ILP approaches but present in the Bayesian
literature, to perform inductive inferences of facts. For ex-
ample, when observing that salmon can swim, and have fins
and gills, the model can learn the core fact that salmon are
fish even though that is not deducible directly. The learned
rule and core fact representations are interpretable and can
involve predicate invention. We demonstrate the efficacy of
our approach on a variety of ILP rule induction and domain
theory learning datasets.

2. Model

In this section we describe the inference network model
which is trained using stochastic gradient descent to do
rule induction in a standard ILP setting but can also do
theory learning through the induction of both a set of core
facts and a set of logical rules. By learning a core set of
facts from which the observed knowledge can be recovered
through inference, we can compress at the same time we
generalize. Compression is achieved through a loss term
which penalizes the number of initial core facts.
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Figure 1. Overview of the Model. Parameters are represented with
green balls and constitute the trainable embeddings, orange arrows
indicate paths on which gradients flow (in the opposite direction).

Facts are triples (p, s,0), where p € N is an index into a
dictionary of predicate embeddings P, and s, 0 € C (subject
and object) are indices for constants that form the arguments
of the facts. To allow for predicate invention, P is provided
with auxiliary predicates that might become useful in the log-
ical rules. The embeddings that form the fact predicates can
be kept fixed or can be parametrized and modified through
learning. A valuation V : N x C? — [0,1] is a mapping
intended to capture the algorithm’s belief in the truth of
the facts. Logical rules are of the form h < b1,b2,... b,
where h and b; are atoms with variables as arguments, such
as grandfather(X,Y"). The head of the rule may have ei-
ther one or two universally quantified variables. The body
must use any variables used in the head and may in addition
have existential variables. For example, the body may be of
the form b1(z, ), b2(z,y) where « and y are universal and
z is existential. We use simple templates which considerably
constrain the form of the rules'. Every atom of a rule is
associated with an embedding that is randomly initialized.
During learning, rules acquire their meaning by becoming
similar to the dictionary predicates.

The operation of the network is illustrated Figure 1. The
network starts with the initial valuations which are updated
through K steps of forward inference using the logical rules.
To update, the algorithm loops over each rule and sequence
of facts making sure that the constants of the facts and the
variables of the rules can be matched. For example the rule
body b1(z, z), b2(z, y) will unify with p1(a, b), p2(b, ¢) but
not with pl(a,b),p2(c,d). If the fact sequence matches,
we iterate over fact predicates to compute new valuations.
Multiplication between the unification score for the body,
the unification score for the head and the implied valuation
is used as a soft form of AND. The unification score of the

!These templates constitute the most limiting factor of the
current version of our network

body is the product of the cosine distance of each of the body
atoms from their corresponding facts. The implied valuation
is computed using the current valuations for each of the
facts being unified with the body. The unification score for
a particular predicate is taken with the head. If the implied
fact was in the valuation already, it is updated with the max
of the previous and the new values (implementing an OR),
if it is not, the new fact is appended to the valuation. In this
way the valuation is dynamically extended at each step of
inference. To train, the K steps of the inference network
are composed and the valuation of the final consequences
are compared to the valuations of the target using the binary
cross entropy loss. The loss gradients are back-propagated
to update the predicate embeddings for the rules and for
the facts (the predicates of the facts can also be fixed, i.e as
one-hot vectors). The rule and fact predicate embeddings
are the parameters of the network.

When a set of background facts is given, as in the case of
ILP tasks, we initialize the current valuation for the back-
ground facts set to 1.0. In the case of Theory Learning, the
task additionally includes learning the small set of initial
core facts that underly the structure of the observations. Un-
like in the ILP setting, we parameterize the valuations by
initializing them to 0.5 and train them towards values which
allow the model to faithfully recover the observed facts.

3. Experiments and Results
3.1. Predicate Learning ILP Tasks

We test a selection of the ILP problems from (Evans &
Grefenstette, 2018) where the task is to learn a target re-
lation from a set of background knowledge facts. Table 1
gives a performance comparison. We see that our algorithm
performs considerably better. When the embeddings of the
predicate dictionary are fixed as one-hot vectors, our pro-
cedure is very similar to theirs, where embedding weights
are associated to predicates and search happens at the more
compositional level of atoms. The more general case with
trainable dense embeddings opens the interesting direction
of studying the vector embedding semantic space.

Table 1. Predicate learning tasks. Percentage of successful random
weight initializations, || is the number of intentional predicates

Task |I| Recursive OILP Ours
Even 2 Yes 48.5 100
Fizz 3 Yes 10 10
Buzz 2 Yes 35 70
Grandparent 2 No 96.5 100
Cyclic 2 Yes 100 100
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3.2. Countries

We are not focused specifically on knowledge base comple-
tion but use the COUNTRIES dataset (Bouchard et al., 2015)
to evaluate the scalability of our algorithm. The dataset con-
tains 272 constants, 2 predicates and 1158 true facts and
we compare with the 3 tasks described in (Rocktischel &
Riedel, 2017) (S1,S2,S3 in table 2). At each training epoch
we randomly sample from a section of the knowledge graph
both the targets and a set of facts that form the background
knowledge.

Table 2. Performance on COUNTRIES dataset

Task NTP NTP-\ Ours

S1 90.83 +15.4 100.00£0.0 91.15+154
S2 87.40 +11.7 94.04 £ 0.4 86.87 + 3.2
S3 56.68 +17.6 77.26+17.0 63.08 +28.2

3.3. Learning Theories

We test the capability of our network to compress a set
of observations in the form of a theory by learning both
a set of core facts in addition to the logical rules. We
take the two examples considered by (Yarden et al., 2008).
A Taxonomy is a a tree structure where all the observed
facts can be recovered from inheritance rules such as
I1S(xz,y) + IS(x,z2),15(z,y), and from a small set of
direct relations which form the core facts. We report per-
formance on the harder tree from (Rogers & McClelland,
2004, p. 17). The Kinship theory consists on the compres-
sion of 6 observed predicates (mother, father, daughter,
wife, husband) into 4 new core predicates (female, male,
spouse, child) which acquire their meaning through their
learned extensions and logical rules (i.e mother(X,Y) «
female(X), child(Y, X)).Table 3 shows the statistics for
the observed data and for the target compressed theory as
well as the algorithm performance quantified as the per-
centage of initializations where the rules are successfully
learned, the accuracy of the recovered data and the number
of learned core facts.
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Table 3. Theory Learning Results

‘ Taxonomy | Family
‘ # Preds # Const # Facts ‘ #Preds # Const # Facts
Observed 4 36 145 6 10 30
Target Theory 4 36 40 4 10 28
% Succ  %Acc. #Facts | % Succ  %Acc.  #Facts
Network 70 99 69 100 96 30.8




