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This Talk

1. Strong generalization 
• By building neural network models inspired 

by natural source code1 

2. Weak supervision 
• By differentiating through approximate 

marginalization algorithms

Hindle, A., Barr, E.T., Su, Z., Gabel, M. and Devanbu, P., 2012, June. On the naturalness of software. In 2012 34th International Conference 
on Software Engineering (ICSE) (pp. 837-847). IEEE. 
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Inductive Bias of Source Code

Write a short natural program to add a and b:

def add(a, b):
  carry = 0
  for i in range(len(a)):
     cur = a[i] + b[i] + carry
     result.append(cur % 10)
     carry = cur / 10
  result.append(carry)
  return result



Write a short natural program to add a and b: 
Now modify so that it works on lengths 1-20 but not >20.

def add(a, b):
  carry = 0
  for i in range(len(a)):
     cur = a[i] + b[i] + carry
     result.append(cur % 10)
     carry = cur / 10
  result.append(carry)
  return result

Inductive Bias of Source Code



Natural Source Code → Inductive Bias → Strong Generalization

Claim / Aspiration:  
Programming languages are designed to 
compactly express the computations that 
people want to perform, and to make it easy for 
humans to reason about complex computations.  
Natural source code induces a prior over 
natural computations, which we can leverage as 
inductive bias in machine learning models to 
achieve strong generalization.

Compared to Kolmogorov complexity, Solomonoff induction, 
AIXI, etc: here we care about the constants and specific details 
of, e.g., how modern programming languages represent 
algorithms. Think python, not binary encoding of programs.



Properties of natural programs: 

- algorithm structure often (but not always) invariant to data values  

- structured loops (for loops vs goto spaghetti), recursion 

- locality / sparsity in accessing & modifying data 

- modularity / compositionality / abstraction 

- organized into reusable libraries, object-oriented programming 

- …



Source Code Inductive Bias Not Always Favorable

Tusker

Write a short natural program to classify an image

def add(a, b):
  carry = 0
  for i in range(len(a)):
     cur = a[i] + b[i] + carry
     result.append(cur % 10)
     carry = cur / 10
  result.append(carry)
  return resultX



Goal

Source code inductive bias for strong generalization 

+ 

Neural networks to handle rich data types
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How to combine source code bias and neural nets?

a. Build models around specific algorithmic structures 

• Graph algorithms → Graph Neural Networks 

b. Learn models represented as source code 

• Extend differentiable interpreters to learn neural 
network subroutines



a. Build models around specific algorithmic structures

• Graph algorithms → Graph Neural Networks

b. Learn models represented as source code 

• Extend differentiable interpreters to learn neural 
network subroutines

How to combine source code bias and neural nets?



Example Graph Algorithm: Bellman Ford

for v in vertices:
   distance[v] = inf
   predecessor[v] = null
distance[source] = 0
   
for i in range(len(vertices)) - 1:
  for (u, v) in edges:
    if distance[u] + 1 < distance[v]:
      distance[v] = distance[u] + 1 // assume edge costs=1
      predecessor[v] = u

Computes shortest paths from source to all other vertices — 
works for any graph structure

Initialize node representations

Repeatedly update node 
representations as function of 

neighbor representations

Decode solution from node representations



Graph Neural Networks

Repeatedly update node representations 
as learned function of neighbor 
representations and edge types

Decode prediction from node representations

End-to-end differentiable, train by SGD

Initialize node representations (hidden vector per node)



Gated Graph Sequence Neural Networks

Gori, M., Monfardini, G. and Scarselli, F., 2005. A New Model for Learning in Graph Domains. In Proc of IEEE International Joint 
Conference on Neural Networks 2005. 

Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M. and Monfardini, G., 2009. The Graph Neural Network Model. IEEE 
Transactions on Neural Networks 2009. 

Li, Y., Tarlow, D., Brockschmidt, M. and Zemel, R., 2015. Gated Graph Sequence Neural Networks. In Proc of International 
Conference on Learning Representations 2016.
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Figure 1: (a) Example graph. Color denotes edge types. (b) Unrolled one timestep. (c) Parameter
tying and sparsity in recurrent matrix. Letters denote edge types with B

0 corresponding to the reverse
edge of type B. B and B

0 denote distinct parameters.

The matrix A 2 RD|V|⇥2D|V| determines how nodes in the graph communicate with each other. The
sparsity structure and parameter tying in A is illustrated in Fig. 1. The sparsity structure corresponds
to the edges of the graph, and the parameters in each submatrix are determined by the edge type
and direction. A

v: 2 RD⇥2D|V| is the submatrix of A containing the rows corresponding to node
v. Eq. 1 is the initialization step, which copies node annotations into the first components of the
hidden state and pads the rest with zeros. Eq. 2 is the step that passes information between different
nodes of the graph via incoming and outgoing edges with parameters dependent on the edge type
and direction. a(t)

v

2 R2D contains activations from edges in both directions. The remaining are
GRU-like updates that incorporate information from the other nodes and from the previous timestep
to update each node’s hidden state. z and r are the update and reset gates, �(x) = 1/(1+ e

�x) is the
logistic sigmoid function, and � is element-wise multiplication. We initially experimented with a
vanilla recurrent neural network-style update, but in preliminary experiments we found this GRU-like
propagation step to be more effective.

3.3 OUTPUT MODELS

There are several types of one-step outputs that we would like to produce in different situations. First,
GG-NNs support node selection tasks by making o

v

= g(h(T )
v

,x

v

) for each node v 2 V output node
scores and applying a softmax over node scores. Second, for graph-level outputs, we define a graph
level representation vector as
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where �(i(h(T )
v
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v

)) acts as a soft attention mechanism that decides which nodes are relevant to the
current graph-level task. i and j are neural networks that take the concatenation of h(T )

v

and x

v

as
input and outputs real-valued vectors. The tanh functions can also be replaced with the identity.

4 GATED GRAPH SEQUENCE NEURAL NETWORKS

Here we describe Gated Graph Sequence Neural Networks (GGS-NNs), in which several GG-NNs
operate in sequence to produce an output sequence o

(1)
. . .o

(K).

For the k

th output step, we denote the matrix of node annotations as X (k) = [x(k)
1 ; . . . ;x(k)

|V|]
> 2

R|V|⇥LV . We use two GG-NNs F (k)
o

and F (k)
X : F (k)

o

for predicting o

(k) from X (k), and F (k)
X for

predicting X (k+1) from X (k). X (k+1) can be seen as the states carried over from step k to k + 1.
Both F (k)

o

and F (k)
X contain a propagation model and an output model. In the propagation models,

we denote the matrix of node vectors at the t

th propagation step of the k

th output step as H(k,t) =

[h(k,t)
1 ; . . . ;h(k,t)

|V| ]> 2 R|V|⇥D. As before, in step k, we setH(k,1) by 0-extending X (k) per node. An

overview of the model is shown in Fig. 2. Alternatively, F (k)
o

and F (k)
X can share a single propagation

model, and just have separate output models. This simpler variant is faster to train and evaluate, and
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independent per node, which are implemented by mapping the final node representations h(T )
v

, to an
output o

v

= g(h(T )
v

, l

v

) for each node v 2 V . To handle graph-level classifications, they suggest to
create a dummy “super node” that is connected to all other nodes by a special type of edge. Thus,
graph-level regression or classification can be handled in the same manner as node-level regression
or classification.

Learning is done via the Almeida-Pineda algorithm (Almeida, 1990; Pineda, 1987), which works by
running the propagation to convergence, and then computing gradients based upon the converged
solution. This has the advantage of not needing to store intermediate states in order to compute
gradients. The disadvantage is that parameters must be constrained so that the propagation step is
a contraction map. This is needed to ensure convergence, but it may limit the expressivity of the
model. When f(·) is a neural network, this is encouraged using a penalty term on the 1-norm of the
network’s Jacobian. See Appendix A for an example that gives the intuition that contraction maps
have trouble propagating information across a long range in a graph.

3 GATED GRAPH NEURAL NETWORKS

We now describe Gated Graph Neural Networks (GG-NNs), our adaptation of GNNs that is suitable
for non-sequential outputs. We will describe sequential outputs in the next section. The biggest mod-
ification of GNNs is that we use Gated Recurrent Units (Cho et al., 2014) and unroll the recurrence
for a fixed number of steps T and use backpropagation through time in order to compute gradients.
This requires more memory than the Almeida-Pineda algorithm, but it removes the need to constrain
parameters to ensure convergence. We also extend the underlying representations and output model.

3.1 NODE ANNOTATIONS

In GNNs, there is no point in initializing node representations because the contraction map constraint
ensures that the fixed point is independent of the initializations. This is no longer the case with
GG-NNs, which lets us incorporate node labels as additional inputs. To distinguish these node labels
used as inputs from the ones introduced before, we call them node annotations, and use vector x to
denote these annotations.

To illustrate how the node annotations are used, consider an example task of training a graph neural
network to predict whether node t can be reached from node s on a given graph. For this task, there
are two problem-related special nodes, s and t. To mark these nodes as special, we give them an
initial annotation. The first node s gets the annotation x

s

= [1, 0]>, and the second node t gets the
annotation x

t

= [0, 1]>. All other nodes v have their initial annotation set to x

v

= [0, 0]>. Intuitively,
this marks s as the first input argument and t as the second input argument. We then initialize the
node state vectors h(1)

v

using these label vectors by copying x

v

into the first dimensions and padding
with extra 0’s to allow hidden states that are larger than the annotation size.

In the reachability example, it is easy for the propagation model to learn to propagate the node annota-
tion for s to all nodes reachable from s, for example by setting the propagation matrix associated with
forward edges to have a 1 in position (0,0). This will cause the first dimension of node representation
to be copied along forward edges. With this setting of parameters, the propagation step will cause all
nodes reachable from s to have their first bit of node representation set to 1. The output step classifier
can then easily tell whether node t is reachable from s by looking whether some node has nonzero
entries in the first two dimensions of its representation vector.

3.2 PROPAGATION MODEL

The basic recurrence of the propagation model is

h(1)
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Simple Reasoning Task

Weston, J., Bordes, A., Chopra, S., Rush, A.M., van Merriënboer, B., Joulin, A. and Mikolov, T., 2015. Towards AI-complete question 
answering: A set of prerequisite toy tasks. arXiv preprint arXiv:1502.05698.

D is A 
B is E 
A has_fear F 
G is F 
E has_fear H 
H has_fear A 
C is H 
eval B has_fear H?



Simple Reasoning Task - RNN representation

D is A <EOL> B eval

…

B has-fear H

y

?

D is A 
B is E 
A has_fear F 
G is F 
E has_fear H 
H has_fear A 
C is H 
eval B has_fear H

n0 is n1 
n2 is n3
n1 has_fear n4 
n5 is n4 
n3 has_fear n6
n6 has_fear n1 
n7 is n6 
eval n2 has_fear n6

Normalize



Simple Reasoning Task - GNN representation

A
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D

D is A 
B is E 
A has_fear F 
G is F 
E has_fear H 
H has_fear A 
C is H 
eval B has_fear H
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F
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C
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Properties that enable 
strong generalization:

Value independence: 
Learning propagation 
algorithm, not mapping of 
name sequences to answers 
→ generalizes to node 
names and graph structures 
never seen during training.  

Modular: Resilient to adding 
“distraction subgraphs”.

Johnson, D. 2016. Learning Graphical State Transitions. Submitted to ICLR 2017.

Main Limitations:
Not always easy to convert 
real data (e.g., natural 
language) to graph format 
(but see Johnson (2016)) + 
memory use
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Task RNN LSTM GG-NN

bAbI Task 4 97.3±1.9 (250) 97.4±2.0 (250) 100.0±0.0 (50)
bAbI Task 15 48.6±1.9 (950) 50.3±1.3 (950) 100.0±0.0 (50)
bAbI Task 16 33.0±1.9 (950) 37.5±0.9 (950) 100.0±0.0 (50)
bAbI Task 18 88.9±0.9 (950) 88.9±0.8 (950) 100.0±0.0 (50)

Table 1: Accuracy in percentage of different models for different tasks. Number in parentheses is
number of training examples required to reach shown accuracy.

#Training Examples 50 100 250 500 950

RNN 76.7±3.8 90.2±4.0 97.3±1.9 98.4±1.3 99.7±0.4
LSTM 73.5±5.2 86.4±3.8 97.4±2.0 99.2±0.8 99.6±0.8

Table 2: Performance breakdown of RNN and LSTM on bAbI task 4 as the amount of training data
changes.

5.1.2 SEQUENTIAL OUTPUTS

The bAbI Task 19 (Path Finding) is arguably the hardest task among all bAbI tasks (see e.g.,
(Sukhbaatar et al., 2015), which reports an accuracy of less than 20% for all methods that do not use
the strong supervision). We apply a GGS-NN to this problem, again on the symbolic form of the data
(so results are not comparable to those in (Sukhbaatar et al., 2015)). An extra ‘end’ class is added
to the end of each output sequence; at test time the network will keep making predictions until it
predicts the ‘end’ class.

The results for this task are given in Table 3. Both RNN and LSTM fail on this task. However, with
only 50 training examples, our GGS-NNs achieve much better test accuracy than RNN and LSTM.

5.2 LEARNING GRAPH ALGORITHMS

Task RNN LSTM GGS-NNs

bAbI Task 19 24.7±2.7 (950) 28.2±1.3 (950) 71.1±14.7 (50) 92.5±5.9 (100) 99.0±1.1 (250)
Shortest Path 9.7±1.7 (950) 10.5±1.2 (950) 100.0± 0.0 (50)
Eulerian Circuit 0.3±0.2 (950) 0.1±0.2 (950) 100.0± 0.0 (50)

Table 3: Accuracy in percentage of different models for different tasks. The number in parentheses
is number of training examples required to reach that level of accuracy.

We further developed two new bAbI-like tasks based on algorithmic problems on graphs: Shortest
Paths, and Eulerian Circuits. For the first, we generate random graphs and produce a story that lists
all edges in the graphs. Questions come from choosing two random nodes A and B and asking for the
shortest path (expressed as a sequence of nodes) that connects the two chosen nodes. We constrain
the data generation to only produce questions where there is a unique shortest path from A to B

of length at least 2. For Eulerian circuits, we generate a random two-regular connected graph and a
separate random distractor graph. The question gives two nodes A and B to start the circuit, then
the question is to return the Eulerian circuit (again expressed as a sequence of nodes) on the given
subgraph that starts by going from A to B. Results are shown in the Table 3. RNN and LSTM fail
on both tasks, but GGS-NNs learns to make perfect predictions using only 50 training examples.

6 PROGRAM VERIFICATION WITH GGS-NNS

Our work on GGS-NNs is motivated by a practical application in program verification. A crucial
step in automatic program verification is the inference of program invariants, which approximate the
set of program states reachable in an execution. Finding invariants about data structures is an open
problem. As an example, consider the simple C function on the right.

8

Takeaway - when problem is well-represented as a simple graph, 
GNN formulation learns a more accurate model from less data.
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shortest path (expressed as a sequence of nodes) that connects the two chosen nodes. We constrain
the data generation to only produce questions where there is a unique shortest path from A to B

of length at least 2. For Eulerian circuits, we generate a random two-regular connected graph and a
separate random distractor graph. The question gives two nodes A and B to start the circuit, then
the question is to return the Eulerian circuit (again expressed as a sequence of nodes) on the given
subgraph that starts by going from A to B. Results are shown in the Table 3. RNN and LSTM fail
on both tasks, but GGS-NNs learns to make perfect predictions using only 50 training examples.

6 PROGRAM VERIFICATION WITH GGS-NNS

Our work on GGS-NNs is motivated by a practical application in program verification. A crucial
step in automatic program verification is the inference of program invariants, which approximate the
set of program states reachable in an execution. Finding invariants about data structures is an open
problem. As an example, consider the simple C function on the right.
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a. Build models around specific algorithmic structures 

• Graph algorithms → Graph Neural Networks 

b. Learn models represented as source code 

• Extend differentiable interpreters to learn neural 
network subroutines

How to combine source code bias and neural nets?
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Motivation

GNNs are built around a very restricted 
algorithmic template.  

Can we also learn the algorithmic template?

→ Build on differentiable interpreters

Bunel, Desmaison, Kohli, Torr, Kumar. “Adaptive Neural Compilation.” NIPS 2016. 
Riedel, Bošnjak, Rocktäschel. “Programming with a Differentiable Forth Interpreter.” 2016. 
Gaunt et al. “TerpreT: A Probabilistic Programming Language for Program Induction. 2016.



instr

input outputtmp 
result reg[0]

result 
reg

reg[1]

return 
regParams

1. Let Params be learnable categorical distributions 
2. Lift all operations (squares) to be differentiable 
3. Observe discrete inputs and outputs 
4. Maximize p(outputs|inputs; Params)

reg[0] = 0; reg[1] = 0
reg[??] = instruction[??](input)
return reg[??]

instrresult reg

return reg

Differentiable Interpreter: Example
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Similar logic applies to if statements

Lifting Function Applications

See Gaunt et al. poster on “TerpreT” for lots more.
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3
T = 5; tape length = 4; max int = tape length

@Runtime([max int , 2], max int)
def add(a, b): return (a + b) % max int

@Runtime([tape length], tape length)
def inc(a): return (a + 1) % tape length

tape = Input(2)[tape length]
instr = Param(2)[T]
count = Var(max int)[T + 1]
pos = Var(tape length)[T + 1]

pos[0].set to(0)
count[0].set to(0)

for t in range(T):
if instr[t] == 0: # MOVE

pos[t + 1] = inc(pos[t])
count[t + 1].set to(count[t])

elif instr[t] == 1: # READ
pos[t + 1].set to(pos[t])
with pos[t] as p:

count[t + 1].set to(
add(count[t], tape[p]))

final count = Output(max int)
final count.set to(count[T � 1])

T = 5; tape length = 4; max int = tape length

@Runtime([max int , 2], max int)
def add(a, b): return (a + b) % max int

@Runtime([tape length], tape length)
def inc(p): return (p + 1) % tape length

@Learn([Tensor(28,28)],2,hid sizes=[256,256])
def is dinosaur(image): pass

tape = InputTensor(28,28)[tape length]
instr = Param(2)[T]
count = Var(max int)[T + 1]
pos = Var(tape length)[T + 1]
tmp = Var(2)[T + 1]

pos[0].set to(0)
count[0].set to(0)

for t in range(T):
if instr[t] == 0: # MOVE

pos[t + 1] = inc(pos[t])
count[t + 1].set to(count[t])

elif instr[t] == 1: # READ
pos[t + 1].set to(pos[t])
with pos[t] as p:

tmp[t].set to(is dinosaur(tape[p]))
count[t + 1].set to(
add(count[t], tmp[p]))

final count = Output(max int)
final count.set to(count[T � 1])

Figure 1: (NEURAL) TERPRET programs for counting symbols on a tape, with input-output examples.
Both programs describe an interpreter with instructions to MOVE on the tape and READ the tape
according to source code parametrised by instr. (left) A TERPRET program that counts ’1’s.
(right) A NEURAL TERPRET program that additionally learns a classifier is dinosaur.

tasks: rather than inducing one fresh program per task, the system is able to incrementally build a li-
brary of (neural) functions that are shared across task-specific programs. To encapsulte the challenges
embodied in this problem formulation, we name the problem Lifelong Perceptual Programming By
Example (LPPBE). Our extension of differentiable interpreters that allows perceptual data types,
neural network function definitions, and lifelong learning is called NEURAL TERPRET (NTPT).

Empirically, we show that a NTPT-based model learns to perform a sequence of tasks based on
images of digits and mathematical operators. In early tasks, the model learns the concepts of digits and
mathematical operators from a variety of weak supervision, then in a later task it learns to compute
the results of variable-length mathematical expressions. The approach is resilient to catastrophic
forgetting (McCloskey & Cohen, 1989; Ratcliff, 1990); on the contrary, results show that performance
continues to improve on earlier tasks even when only training on later tasks. In total, the result is a
method that can gather knowledge from a variety of weak supervision, distill it into a cumulative,
re-usable library, and use the library within induced algorithms to exhibit strong generalization.

2 PERCEPTUAL PROGRAMMING BY EXAMPLE

We briefly review the TERPRET language (Gaunt et al., 2016) for constructing differentiable in-
terpreters. To address LPPBE, we develop NEURAL TERPRET, an extension to support lifelong
learning, perceptual data types, and neural network classifiers. We also define our tasks.

2.1 TERPRET

TERPRET programs describe differentiable interpreters by defining the relationship between Inputs
and Outputs via a set of inferrable Params that define an executable program and Vars that store
intermediate results. TERPRET requires all of these variables to be finite integers. To learn using
gradient descent, the model is made differentiable by a compilation step that lifts the relationships
between integers specified by the TERPRET code to relationships between marginal distributions
over integers in finite ranges. There are two key operations in this compilation process:

2

Adding Neural Function Calls to Differentiable Interpreter

Lifelong Perceptual Programming by Example
Alex Gaunt, Marc Brockschmidt, Nate Kushman, Daniel Tarlow. 
arXiv:1611.02109

Define a neural function = 
instantiate a neural net

Can then call neural functions like discrete 
functions, taking tensor data as input

End-to-end differentiable, 
train by SGD

Define some discrete functions

Program to infer: decide whether to MOVE 
or READ at each timestep t = 1…T

Observe total counts
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Figure 2: Overview of tasks in the (a) ADD2X2, (b) APPLY2X2 and (c) MATH scenarios. ‘A’ denotes
the APPLY operator which replaces the ? tiles with the selected operators and executes the sum. We
show two MATH examples of different length.

• Function application. The statement z.set to(foo(x, y)) is translated into µz

i

=P
jk

I
ijk

µx

j

µy

k

where µa represents the marginal distribution for the variable a and I is
an indicator tensor [i = foo(j, k)]. This approach extends to all functions mapping any
number of integer arguments to an integer output.

• Conditional statements The statements if x == 0: z.set to(a); elif x ==
1: z.set to(b) are translated to µz = µx

0µ
a+µx

1µ
b. More complex statements follow

a similar pattern, with details given in Gaunt et al. (2016).

This compilation process yields a TensorFlow (Abadi et al., 2016) computation graph containing
many of these two operations, which can then be trained using standard methods.

2.2 NEURAL TERPRET

To handle perceptual data, we relax the restriction that all variables need to be finite integers. We intro-
duce a new tensor type whose dimensions are fixed at declaration, and which is suitable to store per-
ceptual data. Additionally, we introduce learnable functions that can process vector variables. A learn-
able function is declared using @Learn([d1, . . . , dD], d

out

, hid sizes=[`1, . . . , `L]),
where the first component specifies the dimensions d1, . . . , dD of the inputs (which can be finite
integers or tensors) and the second the dimension of the output. NTPT compiles such functions into
a fully-connected feed-forward neural network whose layout can be controlled by the hid sizes
component, which specifies the number of layers and neurons in each layer. The inputs of the function
are simply concatenated. Vector output is generated by learning a mapping from the last hidden layer,
and finite integer output is generated by a softmax layer generating a distribution over integers up to
the declared bound. Learnable parameters for the generated network are shared across every use in
the NTPT program, and as they naturally fit into the computation graph for the remaining TERPRET
program, can be trained the same way.

A simple TERPRET program counting bits on a tape, and a related NTPT program that counts up
images of a particular class on a tape are displayed in Fig. 1.

2.3 TASKS

To demonstrate the benefits of our approach for combining neural networks with program-like archi-
tecture, we consider three toy scenarios consisting of several related tasks depicted in Fig. 2.

ADD2X2 scenario: The first scenario in Fig. 2(a) uses of a 2⇥ 2 grid of MNIST digits. We set 4
tasks based on this grid: compute the sum of the digits in the (1) top row, (2) left column, (3) bottom
row, (4) right column. All tasks require classification of MNIST digits, but need different programs
to compute the result. As training examples, we supply only a grid and the resulting sum. Thus, we
never directly label an MNIST digit with its class.

APPLY2X2 scenario: The second scenario in Fig. 2(b) presents a 2 ⇥ 2 grid of of handwritten
arithmetic operators. Providing three auxiliary random integers d1, d2, d3, we again set 4 tasks
based on this grid, namely to evaluate the expression1 d1 op1 d2 op2 d3 where (op1, op2) are
the operators represented in the (1) top row, (2) left column, (3) bottom row, (4) right column. In

1Note that for simplicity, our toy system ignores operator precedence and executes operations from left to
right - i.e. the sequence in the text is executed as ((d1 op1 d2) op2 d3).
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Figure 6: Lifelong learning with NTPT. (a) top: the sequential learning schedule for all 8 tasks,
bottom: performance of NTPT (solid) and the baseline (dashed) on the first ADD2X2 task. (b)
performance on the remaining ADD2X2 tasks. (c) Final accuracy on all tasks.

• NTPT shows reverse transfer: even when we have stopped presenting examples for the first
task (such examples are indicated by the red bars), the performance on this task continues
to increase. We verify that this is due to continuous improvement of net 0 by observing
that the accuracy on the ADD2X2 task closely tracks measurements of the accuracy of
net 0 directly on the digit classification task (the final accuracy of net 0 on the direct
classification task is 93%).

• With the chosen balance of learning rates NTPT does not display catastrophic forgetting.

• NTPT considerably outperforms the baseline whose performance on ADD2X2 tasks starts
to drop while training on later tasks.

Fig. 6(b) shows the performance on the remaining ADD2X2 tasks. We see that sharing of meaningful
classifiers allows NTPT to learn solutions faster and with higher accuracy that the baseline. The
results are similar for the APPLY2X2 scenario, with Fig. 6(c) showing that NTPT solves these tasks
with ⇠ 100% accuracy due to the simple nature of the operator data set, while the baseline struggles
due to the complexity of the required program.

4.3 GENERALIZATION

Figure 7: Generalisation behaviour
on MATH expressions of varying
length after training on 2 digit ex-
pressions.

In the final experiment we take net 0/1 from the end of
the experiment above and start training on the MATH sce-
nario with arithmetic expressions containing 2 digits. The
loopy structure of the MATH model introduces many local op-
tima into the optimisation landscape and only 2/100 random
restarts converge on a correct program. During a successful
training run, the accuracy of net 0 on the digit classification
task increases from 93% to 95%, and the accuracy of net 1
remains at 100%. Once the inferred source code is discretized,
the model generalises well to longer expressions containing N
digits, with the accuracy following the expected form 0.95N

due to the repeated application of net 0. The LSTM baseline
on the other hand shows excellent performance on N = 2, but
does not generalize well (see Fig. 7)

5 RELATED WORK

Lifelong Machine Learning. We operate in the paradigm of Lifelong Machine Learning (LML)
(Thrun, 1994; 1995; Thrun & O’Sullivan, 1996; Silver et al., 2013; Chen et al., 2015), where a learner
is presented a sequence of different tasks and the aim is to retain and re-use knowledge from earlier
tasks to more efficiently and effectively learn new tasks. This is distinct from related paradigms
of multitask learning (presentation of a finite set of tasks simultenaously rather than in sequence
(Caruana, 1997; Kumar & Daume III, 2012; Luong et al., 2015; Rusu et al., 2016)), transfer learning
(transfer of knowledge from a source to target domain without notion of knowledge retention (Pan &

7
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Fig. 6(b) shows the performance on the remaining ADD2X2 tasks. We see that sharing of meaningful
classifiers allows NTPT to learn solutions faster and with higher accuracy that the baseline. The
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loopy structure of the MATH model introduces many local op-
tima into the optimisation landscape and only 2/100 random
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digits, with the accuracy following the expected form 0.95N

due to the repeated application of net 0. The LSTM baseline
on the other hand shows excellent performance on N = 2, but
does not generalize well (see Fig. 7)

5 RELATED WORK

Lifelong Machine Learning. We operate in the paradigm of Lifelong Machine Learning (LML)
(Thrun, 1994; 1995; Thrun & O’Sullivan, 1996; Silver et al., 2013; Chen et al., 2015), where a learner
is presented a sequence of different tasks and the aim is to retain and re-use knowledge from earlier
tasks to more efficiently and effectively learn new tasks. This is distinct from related paradigms
of multitask learning (presentation of a finite set of tasks simultenaously rather than in sequence
(Caruana, 1997; Kumar & Daume III, 2012; Luong et al., 2015; Rusu et al., 2016)), transfer learning
(transfer of knowledge from a source to target domain without notion of knowledge retention (Pan &
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Strong Generalization

Strengths:
Exhibits strong generalization- 
error is just based on error of 
MNIST classification 

Learning is cumulative; can 
continue to update all 
parameters as task distribution 
shifts  

Main Limitation:
Differentiable interpreters are 
susceptible to local optima. 
Training requires many 
random restarts (here ~50)

Future:
Incorporate learned priors 
over source code into model



Why does this mitigate catastrophic forgetting?

Jacobs, R.A., Jordan, M.I., Nowlan, S.J. and Hinton, G.E., 1991. Adaptive mixtures of local experts. Neural computation, 3(1), pp.79-87. 
Hinton, G.E. CSC2515 Lecture notes, http://www.cs.toronto.edu/~hinton/csc2515/notes/lec7.htm

Hinton on Mixture of Experts: 
“This may allow particular models to specialize in a subset 
of the training cases. They do not learn on cases for 
which they are not picked. So they can ignore stuff they 
are not good at modeling.”

Our speculation: 
When a network starts to specialize, it provides enough 
signal to the source code component to know which 
network to use. Once the source code component picks a 
network, the others can ignore stuff they are not good at 
modeling. The source code component focuses the 
supervision for the neural nets.

http://www.cs.toronto.edu/~hinton/csc2515/notes/lec7.htm
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1. Strong generalization 
• By building neural network models inspired 

by natural source code1 

2. Weak supervision 
• By differentiating through approximate 

marginalization algorithms

Hindle, A., Barr, E.T., Su, Z., Gabel, M. and Devanbu, P., 2012, June. On the naturalness of software. In 2012 34th International Conference 
on Software Engineering (ICSE) (pp. 837-847). IEEE. 
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Figure 7: Sample Complexity on NANOCRAFT: The x-axis varies the number of samples con-
taining full program abstractions, while the y-axis shows the accuracy. NPL-{64,128,256} shows
the accuracy of our model when trained with 64/128/256 training samples. NPL-Full shows the
accuracy of NPI, which can utilize only the samples containing full program abstractions. Finally,
Seq-{64,128,256} shows the accuracy of a seq2seq baseline when trained on 64/128/256 samples.
It’s performance does not change as we vary the number of samples with full program abstractions
since it cannot utilize the additional supervision they provide.

ADDITION The task of ADDITION is to read in two numbers represented in digit sequences and
compute the digit sequence of summation of these two numbers. The goal is to let the model learn
the basic procedure of addition: Repeatedly adding two one-digit numbers, writing down result
and carrying if necessary until we reach the very beginning of two digit sequences given. The whole
procedure could be described as operating on a four-row scratch pad, where the first and second rows
are input digit sequences, the third one is the carry digit and forth one the result. The environment
observation is the numbers under four pointers, on on each row of scratch pad moving left and right.
The pointers starts from the rightmost locations, and gradually move to the left most as the procedure
goes. Figure 6 gives an example of full program traces as well as status of scratch pad at specific
point.

4.3 SAMPLE COMPLEXITY

We assume that data with full programmatic abstractions is much more difficult to obtain than data
containing only flat operation sequences, so we study the sample complexity in terms of the num-
ber of such samples. Figure 7 shows sample complexity for the NANOCRAFT task in the fully
observable setting. We can see that for all training regimes with a small number of samples with
full abstractions, NPL significantly outperforms the NPI baseline (NPL-Full). NPL similarly outper-
forms a seq2seq baseline (Seq-*)trained on all of the available data. We also performed preliminary
experiments for the partially observable setting, and obtained similar results. All experiments were
run with 10 different random seeds, and the best model was chosen using a separate validation set
which is one-quarter the size of the training set.

4.4 GENERALIZATION ABILITY

A primary advantage of learning programmatic abstractions over sequences is an increased gener-
alization capability. Figure 8 shows the generalization capabilities of our model on the ADDITION
task. We train our model on samples with the number of input digits ranging from 1 to 5. The
training data contains an equal number of samples for each digit, and includes full program abstrac-
tions for only one randomly chosen sample for each number of digits such that |FULL| = 5. We
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Adding weakly  
supervised examples

# Strongly supervised examples

Neural Program Lattices
Chengtao Li, Daniel Tarlow, Alex Gaunt, Marc Brockschmidt, Nate Kushman. 
ICLR 2017 Submission

Idea: train Neural Programmer-Interpreter with weaker supervision 
by building model that shares algorithm structure with dynamic 
program to compute marginal log likelihood of observations.

Builds on: 
- Connectionist Temporal 

Classification (Graves et al, 2006) 
- Stack RNN (Joulin & Mikolov, 

2015)



Conclusions
Graph Neural Networks
- It might be natural to encode your data as a graph. 
- Node representations can be output of / input to other net to 

handle perceptual data. 
- We can go a long ways by learning models like GNNs that 

generalize across graph structures. 

Source Code Inductive Bias
- Inspires models that can strongly generalize and build up a 

library of components over time. Not restricted to symbolic data! 
- Some surprising benefits like resilience to catastrophic forgetting. 
- Need better program induction methods (see Balog et al. 

“DeepCoder” for using bottom-up cues to aid synthesis) 
- Lots more to do in this space!



End


