In Search of Strong Generalization:

What can we learn from programming languages?

Danny Tarlow
Researcher
Microsoft Research

Joint work with Alex Gaunt, Marc Brockschmidt, Yujia Li, Richard Zemel, Nate Kushman, Chengtao Li.

Motivation - Strong Generalization

Data O Small data

O Big data

Tasks

http://www.scriptol.com/robotics/robots/household.php

Motivation - Strong Generalization

Normal Generalization O Small data

O Big data

Tasks

http://www.scriptol.com/robotics/robots/household.php

Motivation - Strong Generalization

Strong Generalization

O Smalldata
O Big data

Claim: We need diverse data, but also
structured models that have surprisingly
strong generalization abilities

http://www.scriptol.com/robotics/robots/household.php

This Talk

1. Strong generalization

e By building neural network models inspired
by natural source code’

2. Weak supervision

e By differentiating through approximate
marginalization algorithms

Hindle, A., Barr, E.T., Su, Z., Gabel, M. and Devanbu, P., 2012, June. On the naturalness of software. In 2012 34th International Conference
on Software Engineering (ICSE) (pp. 837-847). IEEE.

This Talk

1. Strong generalization

- By building neural network models inspired
by natural source code’

2. Weak supervision

e By differentiating through approximate
marginalization algorithms

Hindle, A., Barr, E.T., Su, Z., Gabel, M. and Devanbu, P., 2012, June. On the naturalness of software. In 2012 34th International Conference
on Software Engineering (ICSE) (pp. 837-847). IEEE.

Inductive Bias of Source Code

Write a short natural program to add a and b:

def add(a, b):

carry = 0

for 1 1n range(len(a)):
cur = a[1] + b[1] + carry
result.append(cur % 10)
carry = cur / 10

result.append(carry)

return result

Inductive Bias of Source Code

Write a short natural program to add a and b:
Now modity so that it works on lengths 1-20 but not >20.

def add(a, b):

carry = 0

for 1 1n range(len(a)):
cur = a[1] + b[1] + carry
result.append(cur % 10)
carry = cur / 10

result.append(carry)

return result

Natural Source Code — Inductive Bias — Strong Generalization

Claim / Aspiration:

Programming languages are designed to
compactly express the computations that
people want to perform, and to make it easy for
humans to reason about complex computations.

Natural source code induces a prior over

natural computations, which we can leverage as
inductive bias in machine learning models to
achieve strong generalization.

Compared to Kolmogorov complexity, Solomonoff induction,
AlXI, etc: here we care about the constants and specific details
of, e.g., how modern programming languages represent
algorithms. Think python, not binary encoding of programs.

Properties of natural programs:

- algorithm structure often (but not always) invariant to data values
- structured loops (for loops vs goto spaghetti), recursion

- locality / sparsity in accessing & modifying data

- modularity / compositionality / abstraction

- organized into reusable libraries, object-oriented programming

Source Code Inductive Bias Not Always Favorable

Write a short natural program to classifty an image

Tusker

Goal

Source code inductive bias for strong generalization
|

Neural networks to handle rich data types

Other examples of encoding algorithmic structure into model

Hinton, G.E., 1986, August. Learning Distributed Representations of Concepts. In Conference of the
Cognitive Science Society.

Bottou, L., 2014. From Machine Learning to Machine Reasoning. Machine Learning, 94(2), pp.133-149.
Graves, A., Wayne, G. and Danihelka, |., 2014. Neural Turing Machines. arXiv preprint arXiv:1410.5401.

Duvenaud, D.K., Maclaurin, D., lparraguirre, J., Bombarell, R., Hirzel, T., Aspuru-Guzik, A. and Adams, R.P.,
2015. Convolutional networks on graphs for learning molecular fingerprints. In Advances in Neural
Information Processing Systems.

Reed, S. and de Freitas, N., 2015. Neural Programmer-Interpreters. In International Conference on Learning
Representations.

Kaiser, £.. and Sutskever, |., 2015. Neural GPUs learn algorithms. In International Conference on Learning
Representations.

Andreas, J., Rohrbach, M., Darrell, T. and Klein, D., 2016. Neural module networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition.

Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, |., Grabska-Barwinska, A., Colmenarejo, S.G.,
Grefenstette, E., Ramalho, T., Agapiou, J. and Badia, A.P., 2016. Hybrid computing using a neural network
with dynamic external memory. Nature.

Andrychowicz, M. and Kurach, K., 2016. Learning Efficient Algorithms with Hierarchical Attentive Memory.
arXiv preprint arXiv:1602.03218.

Tamar, A., Levine, S. and Abbeel, P., 2016. Value lteration Networks. In Advances in Neural Information
Processing Systems.

Sukhbaatar, S., Szlam, A. and Fergus, R., 2016. Learning Multiagent Communication with Backpropagation.
In Advances in Neural Information Processing Systems.

Nowak, A., Bruna, J., 2016. Divide and Conquer with Neural Networks. Submitted to ICLR 2017.

How to combine source code bias and neural nets?

a. Build models around specific algorithmic structures

e Graph algorithms — Graph Neural Networks

b. Learn models represented as source code

e Extend differentiable interpreters to learn neural
network subroutines

How to combine source code bias and neural nets?

a. Build models around specific algorithmic structures

- Graph algorithms — Graph Neural Networks

0. Learn models represented as source code

e Extend differentiable interpreters to learn neural
network subroutines

Example Graph Algorithm: Bellman Ford

Computes shortest paths from source to all other vertices —
works for any graph structure

V vertices:

Initialize node representations

I.II Mo wwdJIJI LV_I = 1T T A =h k=

distance[source] = 0

1 range(len(vertices)) - 1:
Repeatedly update node

representations as function of

neighbor representations assume edge costs=1
predecessor|v]| = u

Decode solution from node representations

Graph Neural Networks

Initialize node representations (hidden vector per node)

Repeatedly update node representations
as learned function of neighbor
representations and edge types

Decode prediction from node representations

End-to-end differentiable, train by SGD

Gated Graph Sequence Neural Networks

@ Outgoing Edges Incoming Edges
1 2 3 4 1 2 3 4

@) B
~l W

)
(b) (c) A =[ALY, AM]

Figure 1: (a) Example graph. Color denotes edge types. (b) Unrolled one timestep. (¢) Parameter
tying and sparsity in recurrent matrix. Letters denote edge types with B’ corresponding to the reverse
edge of type B. B and B’ denote distinct parameters.

B C’

h(Y = [z, 0]7 1) vt =g (Wraq(f) 4 Urhg’ﬁ—”) 4)

_ _
al) — AT {hf‘lw . hff,]l)q +b (2 hi"” = tanh (Wait) +U (rfj ® th‘”)) ()

2t =g (wzagﬂ n UZhS—”) 3)

h(= (1-z.) ©h{™" + 2z, ©h{". (6)

From Li et al (ICLR 2016).

Gori, M., Monfardini, G. and Scarselli, F., 2005. A New Model for Learning in Graph Domains. In Proc of IEEE International Joint
Conference on Neural Networks 2005.

Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M. and Monfardini, G., 2009. The Graph Neural Network Model. I[EEE
Transactions on Neural Networks 2009.

Li, Y., Tarlow, D., Brockschmidt, M. and Zemel, R., 2015. Gated Graph Sequence Neural Networks. In Proc of International
Conference on Learning Representations 2016.

Simple Reasoning Task

Dis A

BisE

A has _fear F
GisF

E has fear H

H has fear A
CisH

eval B has fear H?

Weston, J., Bordes, A., Chopra, S., Rush, A.M., van Merriénboer, B., Joulin, A. and Mikolov, T., 2015. Towards Al-complete question
answering: A set of prerequisite toy tasks. arXiv preprint arXiv:1502.05698.

Simple Reasoning Task - RNN representation

Dis A nO is n

BisE n2 is n3

A has fear F n1 has_fear n4
GisF , n5is n4

E has_fear H Bleliepelibas n3 has_fear n6

H has_fear A n6 has_fear n1
CisH n7 is n6

eval B has_fear H eval n2 has_fear n6

L e e

D IS A <EOL> B eval B has-fear H

Simple Reasoning Task - GNN representation

)

has-fear

@/

has-fear

has fear

-

s /@\

)

@

1O}

Dis A

Bis E

A has_fear F
GisF

E has_fear H

H has_fear A
CisH

eval B has_fear H

Properties that enable
strong generalization:

Value independence:
Learning propagation
algorithm, not mapping of
name sequences to answers
— generalizes to node
names and graph structures
never seen during training.

Modular: Resilient to adding
“distraction subgraphs”.

Main Limitations:

Not always easy to convert
real data (e.g., natural
language) to graph format
(but see Johnson (2016)) +
Memory use

Johnson, D. 2016. Learning Graphical State Transitions. Submitted to ICLR 2017.

Gated Graph Sequence Neural Networks - Experiments

Single Output tasks

Task RNN LSTM GG-NN

bAbl Task 4 97.3£1.9(250) 97.4£2.0(250) 100.0£0.0 (50)
bAbI Task 15 48.6£1.9 (950) 50.3£1.3 (950) 100.0£0.0 (50)
bAbI Task 16 33.0£1.9 (950) 37.5£0.9 (950) 100.0£0.0 (50)
bAbI Task 18 88.9£0.9 (950) 88.9£0.8 (950) 100.0£0.0 (50)

Table 1: Accuracy in percentage of different models for different tasks. Number in parentheses is
number of training examples required to reach shown accuracy.

Sequential Output tasks

Task RNN LSTM GGS-NNs

bAbI Task 19 24.77£2.7 (950) | 28.2+1.3 (950) 71.1£14.7 (50) 92.54£5.9 (100) 99.0%1.1 (250)
Shortest Path 9.71.7(950) | 10.541.2 (950) | 100.0= 0.0 (50)
Eulerian Circuit 0.3£0.2 (950) 0.1£0.2 (950) | 100.0£ 0.0 (50)

Table 3: Accuracy in percentage of different models for different tasks. The number in parentheses
1s number of training examples required to reach that level of accuracy.

Takeaway - when problem is well-represented as a simple graph,
GNN formulation learns a more accurate model from less data.

How to combine source code bias and neural nets?

a. Build models around specific algorithmic structures

e Graph algorithms — Graph Neural Networks

b. Learn models represented as source code

e Extend differentiable interpreters to learn neural
network subroutines

How to combine source code bias and neural nets?

a. Build models around specific algorithmic structures

e Graph algorithms — Graph Neural Networks

b. Learn models represented as source code

o Extend differentiable interpreters to learn neural
network subroutines

Motivation

GNNSs are built around a very restricted
algorithmic template.

Can we also learn the algorithmic template®

— Build on differentiable interpreters

Bunel, Desmaison, Kohli, Torr, Kumar. “Adaptive Neural Compilation.” NIPS 2016.
Riedel, BosSnjak, Rocktaschel. “Programming with a Ditferentiable Forth Interpreter.” 2016.
Gaunt et al. “TerpreT: A Probabilistic Programming Language for Program Induction. 2016.

Differentiable Interpreter: Example

result reg instr
reg[Ol] = 0; reg[l] = Ol
reg[??] = instruction[??](input)

return reg[??;\\\

return reg

instr result return

Params reg reg
@ > N reg[O] >

reg[1]

1. Let params be learnable categorical distributions
2. Litt all operations (squares) to be differentiable

3. Observe discrete inputs and outputs

4. Maximize p(outputs |inputs; Params)

Lifting Function Applications

Mo lisstalsn.

@ py(V) = pa(@)ps(B)y = gla, B)]
o,

Example:
= reqgister 1
= reqister 2
= result Similar logic applies to 1 statements
g = add

See Gaunt et al. poster on “Terprel” for lots more.

Adding Neural Function Calls to Differentiable Interpreter

Task: learn to classity dinosaurs
@ =3 from counts supervision

T = 5; tape_length = 4; max_int = tape_length

@QRuntime ([max_int, 2], max_int)

def add(a, b): return (a + b) % max.int Define some discrete functions

@QRuntime ([tape_length], tape_length)
def inc(p): return (p + 1) % tape_length

Define a neural function =
Instantiate a neural net

@Learn([Tensor (28,28)],2,hid_sizes=[256,256])
def is_dinosaur(image): pass

tape = InputTensor(28,28)[tape_length] . _
ISt s Param2) T Program to infer: decide whether to MOVE
count = Var(max_int)[T + 1]

pos = Var(tape_length)[T + 1] or READ at each timestept=1...T
tmp Var(2) [T + 1]

pos[0].set_to (0)
count[0].set_to (0)

for t in range(T):
if instr[t] == O0: # MOVE
pos[t + 1] = inc(pos[t])
count[t + 1].set_to(count[t])
elif instr[t] == 1: # READ
pos[t + 1].set_to(pos[t])

with pos[t] as g+ ™ Can then call neural functions like discrete
tmp[t].set_to(is_dinosaur (tapel[p]l))

count [t + 1Jwsetwtol functions, taking tensor data as input
add(count[t], tmp[p]l))

final_count = Output(max_int)

final_count.set_to(count[T — 1]) Observe total counts

Lifelong Perceptual Programming by Example End—tO—eﬂd d iffere ntiable,

Alex Gaunt, Marc Brockschmidt, Nate Kushman, Daniel Tarlow.

arXiv:1611.02109 train by SGD

Learn programs for sequence of tasks; share neural functions

. . . ADD2x2: top row
D|Str|bUt|On ; ADD2x2: left column
Of ’[asks VS _ ADD2x2: bottom row
. ADD2x2: right column
{ime | APPLY2x2 tasks

| ast seen
example

of first task
256 384

training example (1000s)

First task performances (solids)
and baseline multitask net (dashed)

Strong Generalization

P
5
o 50
S
S
O
O
©

digits in expression

Figure 7: Generalisation behaviour
on MATH expressions of varying
length after training on 2 digit ex-
pressions.

C)e)3)--

Strengths: (AR
Exhibits strong generalization-
error is just based on error of
MNIST classification

Learning is cumulative; can
continue to update all
parameters as task distribution
shifts

Differentiable interpreters are
susceptible to local optima.
Training requires many
random restarts (here ~50)

Future:
Incorporate learned priors
over source code into model

Why does this mitigate catastrophic forgetting?

Hinton on Mixture of Experts:

“This may allow particular models to specialize in a subset
of the training cases. They do not learn on cases for
which they are not picked. So they can ignhore stuff they
are not good at modeling.”

Our speculation:

When a network starts to specialize, it provides enough
signal to the source code component to know which
network to use. Once the source code component picks a
network, the others can ignore stutf they are not good at
modeling. The source code component focuses the
supervision for the neural nets.

Jacobs, R.A., Jordan, M.I., Nowlan, S.J. and Hinton, G.E., 1991. Adaptive mixtures of local experts. Neural computation, 3(1), pp.79-87.
Hinton, G.E. CSC2515 Lecture notes, http://www.cs.toronto.edu/~hinton/csc2515/notes/lec7.htm

http://www.cs.toronto.edu/~hinton/csc2515/notes/lec7.htm

This Talk

1. Strong generalization

e By building neural network models inspired
by natural source code’

2. Weak supervision

e By differentiating through approximate
marginalization algorithms

Hindle, A., Barr, E.T., Su, Z., Gabel, M. and Devanbu, P., 2012, June. On the naturalness of software. In 2012 34th International Conference
on Software Engineering (ICSE) (pp. 837-847). IEEE.

This Talk

1. Strong generalization

e By building neural network models inspired
by natural source code’

2. Weak supervision

o By differentiating through approximate
marginalization algorithms

Hindle, A., Barr, E.T., Su, Z., Gabel, M. and Devanbu, P., 2012, June. On the naturalness of software. In 2012 34th International Conference
on Software Engineering (ICSE) (pp. 837-847). IEEE.

Weak Supervision

dea: train Neural Programmer-Interpreter with weaker supervision
oy building model that shares algorithm structure with dynamic
orogram to compute marginal log likelihood of observations.

Builds on:

- Connectionist Temporal
Classification (Graves et al, 20006)

- Stack RNN (Joulin & Mikolov, .
201 5) Adding weakly

supervised examples

>
O
<
o
)
Q
O
<
o
o

Strongly supervised examples

32 64 128 256

NPL-Full NPL-64 NPL-128 NPL-256 Seq-64 Seq-128 Seq-256

Neural Program Lattices
Chengtao Li, Daniel Tarlow, Alex Gaunt, Marc Brockschmidt, Nate Kushman.
ICLR 2017 Submission

Conclusions
Graph Neural Networks
t might be natural to encode your data as a graph.

- Node representations can be output of / input to other net to
nandle perceptual data.

- We can go a long ways by learning models like GNNs that
generalize across graph structures.

Source Code Inductive Bias

- Inspires models that can strongly generalize and build up a
ibrary of components over time. Not restricted to symbolic data!

- Some surprising benetits like resilience to catastrophic forgetting.

- Need better program induction methods (see Balog et al.
“DeepCoder” for using bottom-up cues to aid synthesis)

- Lots more to do In this space!

Ena

