(% NEW YORK UNIVERSITY £ Facebook Al Research

Learning Communication and
Abstraction with Neural Nets

Rob Fergus

Facebook AI Research, New York University

Work with:
Arthur

Szlam

Sainbayar
Sukhbaatar

Overview

e Communication

— Learnable communication protocol between neural
net agents solving collaborative tasks

* Abstraction (ongoing work)

— Hierarchy of actions in reinforcement learning for
better scaling, planning and exploration

Communication Neural Network

(CommNet)

Input is a set
FHach element has its own processing stream

Continuous broadcast communication channel
between streams

Streams must learn to communicate to solve task

CommNet Model

*] data points / streams

* # communication hops fixed Outputs

T) 'i‘ Hop 2
Multilayer P | | |
S 0000
T’ \ 'I|' Hop 1
" g [T "
1w 000 g
Cj_ﬁj,#j 7’ Stream 1 2 3 4

* 'Trained by backprop

* Invariant to order / number of inputs

Module Structure

* Module f can be single/multi-layer NN or
RNN/LSTM

Module for agent 9
* At step 1, two 1nputs: pit
J

1. Hidden state vector h! e
o | 4)
2. Communication vector ¢! tanh

* Output is new hidden state: ‘ Cj \ ‘ H' \
l.
Cj

i+l i1 i i -
b _0(1;1 hj+?cj) }TL—’

J
Learnable parameters

Big Model Interpretation

* Set of streams = one big model

* Let be single NN layer:

% Y 7YYy Y +1 7 1.1)
| | | |

v

* N.B. Streams share parameters

(Hi ct Cct oo Ci\

[] ct H* Cc* .. C
1T’?3 - |C C H .. C

(|) \¢i ¢ ¢

Dynamically sized: size of T can change depending on input set size

CommNet vs External Memory

NTM / MemNet CommNet

Distributed controller

* Separate controller

* Serial processing Parallel processing

Output Outputs
__________________________ o L 1 1 1
: /E\/ia E Yy Y} | Y v

&é\i\ +

: :: : s
. Memory | | Controller: Y)Y) O
. module ! { module : "

N : +
(}\2 | | + | |
P ' . ’ Stream 11 21 31 41

Experiment: 20 bADI tasks

, Mean error (%) | Failed tasks (err. > 5%)
Kitchen LSTM [29] 36.4 16
t MemN2N [29] %) 3
Sofmax DMN+ [38] 2.8 1
T Independent (MLP module) 15.2 9
+ | CommNet (MLP module) | 7.1 | 3

—l | f—p

w 100
t1 tt | g 50
-

& e\@k ¢ D C
\600 s A & é\%& 0
. &e rb,Q‘\ M) ﬁg{/\@(’
¥ - Q:

“ MemN2N & CommNet

CommNet for Multiagent

Reinforcement Learning (MARL)

Fach stream 1s an agent

Equal reward for all
agents

Agents collaborate to
solve task

Use Policy Gradient:
REINFORCE [Williams et al. 1992]

Action of each agent

{a1,....a,}
~ f)
| N
r tr
\-) v

{81, cony SJ‘}

Input state of each agent

Tratfic Junction game

Cars on fixed routes
Two actions: gas/brake
Limited visibility

Text representation
Variable # cars (max 20)

Rewards:
Collision = -10
Delay = -0.01t

New car
arrivals

3 possible
routes

DR I -

Car exiting

Visual range

Trattic Junction Movie

P P) 000/1:13

Failure rate

Tratfic Junction Results

-¢-Independent

—A& Discrete comm.

100% ‘\ % CommNet Failure rate
\.
N
\\‘; Module f() type

< Model ¢ MLP RNN LSTM

10% ' Independent 20.6+ 141 | 19.5£45 |9.4+56
Fully-connected || 12.54+4.4 |34.84+19.7 | 4.8+ 24

Discrete comm. || 15.8+£93 | 15.242.1 | 8.4+34

CommNet 2.2+ 0.6 7.6£14 |1.6+1.0

1%
1x1 3x3 5x5 7x7

Visionrange

PCAd communication vectors

40

30

20

10

How are the agents communicating?

\\\\\

o-lz.

-20

1
-10

1
10

1
20

1
30

1 1 1 J
40 50 60 70

Corresponding hidden vectors

3.
ol

1L

ok

qF

2t

.

4 I I I
~4 -3 -2 -1

How are the agents communicating?

* Vectors from clusters correspond to distinct
patterns of behavior:

of | &
P L
®-: om m JV m
A B
I
j'PH | = 11
C1 502

Combat game

~ Attack actions

Enemy bot

(e.g. attack _4)

- F

iring ra

nge

— Visual range

Experiment: Combat Game

* 5agents vs 5 enemies in 15x15 map
* Health=3, Shot range=1, power=1, vision=1

Module f() type

Model ® MLP RNN LSTM
Independent 342413 | 37.3+46 | 44.3+04
Fully-connected | 17.747.1 | 29418 | 19.6+£42
Discrete comm. | 29.1+6.7 | 33.4+94 | 46.440.7

CommNet 44.5+ 134 |44.4+ 119 | 49.5+ 126

Other game variations (MLP)
Model m=3 m = 10 |5 X 5 vision
Independent | 29.2+59 | 30.5£87 | 60.5+2.1
CommNet |51.0+14.1 |45.4+124 | 73.0+0.7

Related Work (I)

* Multi-agent Reinforcement Learning

— Lots of papers on collaborative task solving

— But usually communication protocol fixed

* Concurrent work:
Learning to Communicate

with Deep Multi-Agent i E E E a

Reinforcement Learning,

Jakob N. Foerster, Yannis M. _ | 8/ \i&/ N1/ \i/ \ ¥
Assael, Nando de A L
Freitas, Shimon Whiteson, BB EE B

NIPS 2016

Related Work (II)

* Graph Neural Networks

— Gori et al., I[JCNN 2005;

— Scarselli et al., IEEE Trans. Neural Networks, 2009
* Gated Graph Neural Networks

— L1, Zemel, Brockschmidt & Tarlow, ICLR 2016.

@ Outgoing Edges Incoming Edges
@ ~7 1 2 3 41 2 3 4
© st INE
D 3 C B’
A
® « = e

CommNet Summary

Distributed NN model

— Appropriate for tasks where input (and output) 1s set
Models learn sparse communication protocol

Can combine with RL for MARL problems

Learning Multiagent Communication with
Backpropagation, Sainbayar Sukhbaatar, Arthur
Szlam, Rob Fergus, NIPS 2016

Code: https://github.com/facebookresearch/CommNet

Learning Abstraction with NN
(ongoing work)
Abstraction is vital 1n cognitive tasks

Abstraction of observations
— higher layers of ConvNets, hidden state of RNNs

Abstraction of actions in reinforcement learning

Going to work = thousands of steps/actions
= get to station =2 take a train = walk to office

— Deep RL models lack abstraction/hierarchy

— Possible solution: recursive policy

Task-conditional RL.

Usual RL settings have fixed task
— Policy(Observation) = action

Key idea: Generalize so agents also percetve task

— Policy(Observation, Task) = action
Different tasks for different episodes

Tasks can be represented by embedding vector

observation =

Recursive Policy

task

recursion? no

yes

sub-task

\ 4

ion?
‘(fixed] recursion: no

VL pohcy J yes

» action

Execution of recursive policy

function RUN(s, g, 1) e Task Ids: g G =1{1,..., K}
while t < T,,.x do

a < 7(s,g)
if «’ € A then

s <— Environment.Act(a’)
bt 1 e Policy: m:s8x g — d

e Environment actions: a € A ={1,..., M}

Extended actions: a' € A’ = ANG N {<term>}

else if ¢’ = <term> then
return s,t

else
g < d , * During training, give small internal reward
en(f,ii' < Run(s, ¢',¢) for using recursion
end while

end function * Size of reward slowly increases with epoch

Related Work

Options framework [Sutton’99|, HAMs [Parr’98|, MAXQ
[Dietterich’00]

P. Bacon, J. Harb, D. Precup. ““The Option-Critic Architecture”,
2016.

J. Oh, S. Singh, H. Lee, P. Kolhi. “Communicating Hierarchical
Neural Controllers for Learning Zero-shot Task Generalization”,
ICLR Submission, 2016

J. Andreas, D. Klein, S. Levine. “Modular Multitask Reinforcement
Learning with Policy Sketches”, ICLLR Submission, 2016 (borrow
their tasks)

J. Cat, R. Shin, D. Song. “Making Neural Programming
Architectures Generalize via Recursion”, ICILR Submission, 2016

Representation of tasks

* Fixed number of tasks =2 use their unique 1Ds

—¢C

—1=*go to door”, 2=*“lock door”, 3="“close door”

* Future: use natural language to describe a task
— Task = list of words

) ¢

— Ex) “close doot”, “close all doors”, “tind open
doot”

— Generalization to unseen tasks?

Random Difficulty During Training :

walk to X
stand orasp X
make coffee
bring X putXonY
_ J
Y
—
—

Training tasks

N

Random Difficulty During Training :

Learns easy tasks Learn to solve hard tasks by
without recursion recursively calling easy tasks
A A
r N7 B
» time
stand walk to X putXonY
grasp X bring X make coffee
N J
Y

Training tasks

N

Preliminary results

Tasks are randomly sampled from: Lh
Grab wood o
Grab iron >@

Grab rock > .

: . Andreas et al. ’16
Make axe (wood, iron = worktable) (Andreas crat 10

Make sword (rock, iron = factory)
Make hammer (wood, rock = toolshed)
Make bridge(wood, iton, rock = plant)

AR Al A e

Model doesn’t know which ones are easy
No spectification of sub-tasks in Make tasks

Training Details

Using MazeBase [Sukhbaatar et al.’16)

Policy 1s tully-connected NN with 2 hidden
layers (50 units/layer)

Trained with REINFORCE [Williams’92)]

Reward structure:

— Each time step: -0.1
— Complete task: +1

— Use recursion (1 level): +0.02 [ramp; initially zero]

Model learns easy tasks first

1 T ——F T | S S St S T ——F T —
e el grab tasks
fa’ make tasks
lll
08 {
|
o 06 ¢
© |
2 | |'
[¢}]
3
2 04 |
02 | (
1I||
)";I .n"lll.‘
0 = 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100

epoch

Model learns when to use recursion

0.35

0.3 \ |
!
. |

025 tif | |

' grab tasks
make tasks

02 | 4! |

015 | ||

ratio of recurse actions

*l | A |
1A/ } |
/ .Il .‘.‘.- |Il B [
O .1 B ' III’."'I.. Il"l

005 |

10 20 30 40 50 60 70 80 90 100
epoch

success rate

Comparison with non-recursive model

* Success rates on harder “Make” tasks

* 20 hidden units/layer

1-level recursion

No recursion

0.02 1 . . - .
0018 |] 09 | /f
.ﬂf"fr"'
0.016 |] 08 | /|
1
0014 | - 07 | ‘}'f /
i
I
0012 | g 06 | i
E K|‘/ ||
001 } 2 05 | I
& /)
(&] {
0008 | 2 04| 'y
1 L' ,""lll'll |I
0.006 | ||'l|(] 03 | gy
[/8y,
Il ‘ A
0.004 | 'lﬁ‘! '[I I] 02 | S
‘|F|| | \ ‘[||l /
Iit | (
0.002 | w 1"] : 01 | .
RN J)
o U 'k;‘a.a mea\w R N S 0 = , \ , , ,
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200

epoch epoch

Trained Model

RN

W B3]
B
Y2,
L gt

Summary

* Simple recursion-based RL approach

* Learns sub-task structure with minimal supervision

Future work:

* More than two levels of hierarchy
* More complex environment with diverse tasks
* Natural language for task description

e J.earn to create a novel sub-task

Experiment: bag to sequence

Problem: given a set of words, arrange them in
right order.

{is, mouse, cat, chasing} =2 “cat is chasing mouse”
Separate streams for each words

After 2 hops, each stream output its location
Data: Gigaword, 5 words, 2 layer MLLP as f

5-gram by KenLM Our model

Error per word 40% 26%

Fine-tuning ot lower policies

task

1
K gradient

sub-task

reward

a

» action

S

observation =

\ 4

policy]
L J< Iéradient

The whole model a stochastic computation graph = All discrete actions
including internal decisions can be trained with policy gradient.

\ 4

a

Only fine-tune lower policies, and not change its behavior

Initial experiments in grid world

Failure rate on Reward
visit two goals + recursion reward

No recursion 3.11% 0.213

Recursive 1.02% 0.501

Recursive + fine-tune 0.11% 0.561

success rate

08

06 t

04 t

02

Model learns easy tasks

— — grab tasks
/“ make tasks
| j
|
|
|

10 20 30 40 50 60 70 80 90
epoch

100

ratio of recurse actions

0.35

0.3

0.25 |,

02 t

015 ¢

first

01 |

0.05 |

' grab tasks
make tasks

\

\
L 1 -

—_

10 20 30 40 50 60 70

epoch

80 90 100

Not using recursion when task is easy

Communication Structure

* Broadcast channel between all agents

* FHach agent receives average of hidden state

from all other agents: ¢! — b hj.,

7 J -1
§'#]
1" communication step

e

mean

finl finl %

Tratfic Junction (Hard version)

Communication Other game versions
type Easy (MLP) | Hard (RNN)
None 1584+ 12.5 | 2694+ 6.0
Discrete 1.1+24 | 282+ 5.7
Continuous 0.3+ 0.1 22.5+ 6.1
Cont. local - 21.1+ 34

......

Lever pulling task

500 agents with unique IDs

In each episode, 5 of them randomly chosen
There 5 ditterent levers to pull

If all agents pull different levers 2 WIN

Training method
Communication | Supervised | Reinforcement
None 0.59 0.59
CommNet 0.99 0.94

Experiment: bag to sequence

Problem: given a set of words, arrange them in
right order.

{is, mouse, cat, chasing} =2 “cat is chasing mouse”
Separate streams for each words

After 2 hops, each stream output its location
Data: Gigaword, 5 words, 2 layer MLLP as f

5-gram by KenLM Our model

Error per word 40% 26%

