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We propose a neural network model “MemN2N” with external memory, which performs 
multiple lookups on memory before producing output. It is a soft attention version of  
“Memory Network” [1], which has hard attention and requires explicit supervision of  attention, 
which severely limits its application. Furthermore, MemN2N can be trained end-to-end with 
backpropagation using supervision only on the final output.  

We proposed an external memory model with 
soft attention. The model can be trained end-to-
end with backpropagation. The experiments 
show good results on a toy QA tasks and 
competitive performance on language modeling. 
We also showed the model can be extended to 
writing and reinforcement learning. 
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Attention during memory hops 

Text8 (Wikipedia) 

Story (1: 1 supporting fact) Support Hop 1 Hop 2 Hop 3 Story (2: 2 supporting facts) Support Hop 1 Hop 2 Hop 3
Daniel went to the bathroom. 0.00 0.00 0.03 John dropped the milk. 0.06 0.00 0.00
Mary travelled to the hallway. 0.00 0.00 0.00 John took the milk there. yes 0.88 1.00 0.00
John went to the bedroom. 0.37 0.02 0.00 Sandra went back to the bathroom. 0.00 0.00 0.00
John travelled to the bathroom. yes 0.60 0.98 0.96 John moved to the hallway. yes 0.00 0.00 1.00
Mary went to the office. 0.01 0.00 0.00 Mary went back to the bedroom. 0.00 0.00 0.00

Story (16: basic induction) Support Hop 1 Hop 2 Hop 3 Story (18: size reasoning) Support Hop 1 Hop 2 Hop 3
Brian is a frog. yes 0.00 0.98 0.00 The suitcase is bigger than the chest. yes 0.00 0.88 0.00
Lily is gray. 0.07 0.00 0.00 The box is bigger than the chocolate. 0.04 0.05 0.10
Brian is yellow. yes 0.07 0.00 1.00 The chest is bigger than the chocolate. yes 0.17 0.07 0.90
Julius is green. 0.06 0.00 0.00 The chest fits inside the container. 0.00 0.00 0.00
Greg is a frog. yes 0.76 0.02 0.00 The chest fits inside the box. 0.00 0.00 0.00

Where is John?   Answer: bathroom    Prediction: bathroom Where is the milk?   Answer: hallway    Prediction: hallway

What color is Greg?  Answer: yellow    Prediction: yellow Does the suitcase fit in the chocolate?   Answer: no    Prediction: no

Figure 2: Example predictions on the QA tasks of [21]. We show the labeled supporting facts
(support) from the dataset which MemN2N does not use during training, and the probabilities p of
each hop used by the model during inference. MemN2N successfully learns to focus on the correct
supporting sentences.

Penn Treebank Text8
# of # of memory Valid. Test # of # of memory Valid. Test

Model hidden hops size perp. perp. hidden hops size perp. perp.
RNN [15] 300 - - 133 129 500 - - - 184
LSTM [15] 100 - - 120 115 500 - - 122 154
SCRN [15] 100 - - 120 115 500 - - - 161
MemN2N 150 2 100 128 121 500 2 100 152 187

150 3 100 129 122 500 3 100 142 178
150 4 100 127 120 500 4 100 129 162
150 5 100 127 118 500 5 100 123 154
150 6 100 122 115 500 6 100 124 155
150 7 100 120 114 500 7 100 118 147
150 6 25 125 118 500 6 25 131 163
150 6 50 121 114 500 6 50 132 166
150 6 75 122 114 500 6 75 126 158
150 6 100 122 115 500 6 100 124 155
150 6 125 120 112 500 6 125 125 157
150 6 150 121 114 500 6 150 123 154
150 7 200 118 111 - - - - -

Table 2: The perplexity on the test sets of Penn Treebank and Text8 corpora. Note that increasing
the number of memory hops improves performance.

Figure 3: Average activation weight of memory positions during 6 memory hops. White color
indicates where the model is attending during the kth hop. For clarity, each row is normalized to
have maximum value of 1. A model is trained on (left) Penn Treebank and (right) Text8 dataset.

5 Language Modeling Experiments
The goal in language modeling is to predict the next word in a text sequence given the previous
words x. We now explain how our model can easily be applied to this task.

We now operate on word level, as opposed to the sentence level. Thus the previous N words in the
sequence (including the current) are embedded into memory separately. Each memory cell holds
only a single word, so there is no need for the BoW or linear mapping representations used in the
QA tasks. We employ the temporal embedding approach of Section 4.1.

Since there is no longer any question, q in Fig. 1 is fixed to a constant vector 0.1 (without
embedding). The output softmax predicts which word in the vocabulary (of size V ) is next in the
sequence. A cross-entropy loss is used to train model by backpropagating the error through multiple
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MemN2N applied to bAbI task 

words. The model writes all x to the memory up to a fixed buffer size, and then finds a continuous
representation for the x and q. The continuous representation is then processed via multiple hops
to output a. This allows back-propagatation of the error signal through multiple memory accesses
back to the input during training.

2.1 Single Layer
We start by describing our model in the a single layer case, which implements a single memory hop
operation. We then show it can be stacked to give multiple hops in memory.

Input memory representation: Suppose we are given an input set x1, .., xi to be stored in memory.
The memory vector mi of dimension d is computed by first embedding each xi in a continuous
space, in the simplest case, using an embedding matrix A (of size d ⇥ V ). Thus, the entire set of
{xi} are converted into memory vectors {mi}. The query q is also embedded (again, in the simplest
case via another embedding matrix B with the same dimensions as A) to obtain an internal state
u. In the embedding space, we compute the match between u and each memory mi by taking the
inner product followed by a softmax:

pi = Softmax(uTmi). (1)

where Softmax(zi) = ezi/
P

j e
zj . Defined in this way p is a probability vector over the inputs.

Output memory representation: Each xi has a corresponding output vector ci (given in the
simplest case by another embedding matrix C). The response vector from the memory o is then a
sum over the ci, weighted by the probability vector from the input:

o =
X

i

pici. (2)

Because the function from input to output is smooth, we can easily compute gradients and back-
propagate through it. Other recently proposed forms of memory or attention take this approach,
notably Bahdanau et al. [2] and Graves et al. [8], see also [9].

Generating the final prediction: In the single layer case, the sum of the output vector o and the
input embedding u is then passed through a final weight matrix W (of size V ⇥ d) and a softmax
to produce the predicted label:

â = Softmax(W (o+ u)) (3)

The overall model is shown in Fig. 1(a). During training, all three embedding matrices A, B and C,
as well as W are jointly learned by minimizing a standard cross-entropy loss between â and the true
label a. Training is performed using stochastic gradient descent (see Section 4.2 for more details).
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Figure 1: (a): A single layer version of our model. (b): A three layer version of our model. In
practice, we can constrain several of the embedding matrices to be the same (see Section 2.2).
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150 6 25 125 118 500 6 25 131 163
150 6 50 121 114 500 6 50 132 166
150 6 75 122 114 500 6 75 126 158
150 6 100 122 115 500 6 100 124 155
150 6 125 120 112 500 6 125 125 157
150 6 150 121 114 500 6 150 123 154
150 7 200 118 111 - - - - -

Table 2: The perplexity on the test sets of Penn Treebank and Text8 corpora. Note that increasing
the number of memory hops improves performance.

Figure 3: Average activation weight of memory positions during 6 memory hops. White color
indicates where the model is attending during the kth hop. For clarity, each row is normalized to
have maximum value of 1. A model is trained on (left) Penn Treebank and (right) Text8 dataset.

5 Language Modeling Experiments
The goal in language modeling is to predict the next word in a text sequence given the previous
words x. We now explain how our model can easily be applied to this task.

We now operate on word level, as opposed to the sentence level. Thus the previous N words in the
sequence (including the current) are embedded into memory separately. Each memory cell holds
only a single word, so there is no need for the BoW or linear mapping representations used in the
QA tasks. We employ the temporal embedding approach of Section 4.1.

Since there is no longer any question, q in Fig. 1 is fixed to a constant vector 0.1 (without
embedding). The output softmax predicts which word in the vocabulary (of size V ) is next in the
sequence. A cross-entropy loss is used to train model by backpropagating the error through multiple
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our model is somewhat simpler, not requiring operations like sharpening. Furthermore, we apply
our memory model to textual reasoning tasks, which qualitatively differ from the more abstract
operations of sorting and recall tackled by the NTM.

Our model is also related to Bahdanau et al. [2]. In that work, a bidirectional RNN based encoder
and gated RNN based decoder were used for machine translation. The decoder uses an attention
model that finds which hidden states from the encoding are most useful for outputting the next
translated word; the attention model uses a small neural network that takes as input a concatenation
of the current hidden state of the decoder and each of the encoders hidden states. A similar attention
model is also used in Xu et al. [23] for generating image captions. Our “memory” is analogous to
their attention mechanism, although [2] is only over a single sentence rather than many, as in our
case. Furthermore, our model makes several hops on the memory before making an output; we will
see below that this is important for good performance. There are also differences in the architecture
of the small network used to score the memories compared to our scoring approach; we use a simple
linear layer, whereas they use a more sophisticated gated architecture.

We also apply our model to language modeling, an extensively studied task. Goodman [6] showed
simple but effective approaches which combine n-grams with a cache. Bengio et al. [3] ignited
interest in using neural network based models for the task, with RNNs [14] and LSTMs [10, 19]
showing clear performance gains over traditional methods. Indeed, the current state-of-the-art is
held by variants of these models, for example very large LSTMs with Dropout [24] or RNNs with
diagonal constraints on the weight matrix [15]. With appropriate weight tying, our model can be
regarded as a modified form of RNN, where the recurrence is indexed by lookups to the word
sequence rather than indexed by the sequence itself.

4 Synthetic Question and Answering Experiments
We perform experiments on the synthetic QA tasks defined in [21]. A given QA task consists of
a set of statements, followed by a question whose answer is typically a single word (in a few tasks,
answers are a set of words). The answer is available to the model at training time, but must be
predicted at test time. There are a total of 20 different types of tasks that probe different forms of
reasoning and deduction. Here are samples of three of the tasks:
Sam walks into the kitchen. Brian is a lion. Mary journeyed to the den.
Sam picks up an apple. Julius is a lion. Mary went back to the kitchen.
Sam walks into the bedroom. Julius is white. John journeyed to the bedroom.
Sam drops the apple. Bernhard is green. Mary discarded the milk.
Q: Where is the apple? Q: What color is Brian? Q: Where was the milk before the den?
A. Bedroom A. White A. Hallway

Note that for each question, only some subset of the statements contain information needed for
the answer, and the others are essentially irrelevant distractors (e.g. the first sentence in the first
example). In the Memory Networks of Weston et al. [21], this supporting subset was explicitly
indicated to the model during training and the key difference between that work and this one is that
this information is no longer provided. Hence, the model must deduce for itself at training and test
time which sentences are relevant and which are not.

Formally, for one of the 20 QA tasks, we are given example problems, each having a set of I
sentences {xi} where I  320; a question sentence q and answer a. The examples are randomly
split into disjoint train and test sets each containing 1000 examples. Let the jth word of sentence
i be xij , represented by a one-hot vector of length V (where the vocabulary is of size V = 177,
reflecting the simplistic nature of the QA language). The same representation is used for the
question q and answer a. Two versions of the data are used, one that has 1000 training problems
per task and a second larger one with 10,000 per task.

4.1 Model Details
Unless otherwise stated, all experiments used a K = 3 hops model with the adjacent weight sharing
scheme. For all tasks that output lists (i.e. the answers are multiple words), we take each possible
combination of possible outputs and record them as a separate answer vocabulary word.

Sentence Representation: In our experiments we explore two different representations for
the sentences. The first is the bag-of-words (BoW) representation that takes the sentence
xi = {xi1, xi2, ..., xin}, embeds each word and sums the resulting vectors: e.g mi =

P
j Axij and
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Experiment on Language modeling 

Input numbers Reserved for output 

Initial memory content 

words. The model writes all x to the memory up to a fixed buffer size, and then finds a continuous
representation for the x and q. The continuous representation is then processed via multiple hops
to output a. This allows back-propagatation of the error signal through multiple memory accesses
back to the input during training.

2.1 Single Layer
We start by describing our model in the a single layer case, which implements a single memory hop
operation. We then show it can be stacked to give multiple hops in memory.

Input memory representation: Suppose we are given an input set x1, .., xi to be stored in memory.
The memory vector mi of dimension d is computed by first embedding each xi in a continuous
space, in the simplest case, using an embedding matrix A (of size d ⇥ V ). Thus, the entire set of
{xi} are converted into memory vectors {mi}. The query q is also embedded (again, in the simplest
case via another embedding matrix B with the same dimensions as A) to obtain an internal state
u. In the embedding space, we compute the match between u and each memory mi by taking the
inner product followed by a softmax:

pi = Softmax(uTmi). (1)

where Softmax(zi) = ezi/
P

j e
zj . Defined in this way p is a probability vector over the inputs.

Output memory representation: Each xi has a corresponding output vector ci (given in the
simplest case by another embedding matrix C). The response vector from the memory o is then a
sum over the ci, weighted by the probability vector from the input:

o =
X

i

pici. (2)

Because the function from input to output is smooth, we can easily compute gradients and back-
propagate through it. Other recently proposed forms of memory or attention take this approach,
notably Bahdanau et al. [2] and Graves et al. [8], see also [9].

Generating the final prediction: In the single layer case, the sum of the output vector o and the
input embedding u is then passed through a final weight matrix W (of size V ⇥ d) and a softmax
to produce the predicted label:

â = Softmax(W (o+ u)) (3)

The overall model is shown in Fig. 1(a). During training, all three embedding matrices A, B and C,
as well as W are jointly learned by minimizing a standard cross-entropy loss between â and the true
label a. Training is performed using stochastic gradient descent (see Section 4.2 for more details).
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Figure 1: (a): A single layer version of our model. (b): A three layer version of our model. In
practice, we can constrain several of the embedding matrices to be the same (see Section 2.2).
2.2 Multiple Layers
We now extend our model to handle K hop operations. The memory layers are stacked in the
following way:
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In this work we make two contributions. First, we simplify and extend the graph neural network3

architecture of ??. Second, we show how this architecture can be used to control groups of cooperating4

agents.5

2 Model6

The simplest form of the model consists of multilayer neural networks f i
that take as input vectors7

hi
and ci and output a vector hi+1
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We set c0j = 0 for all j, and i 2 {0, ..,K} (we will call K the number of hops in the network).11

If desired, we can take the final hK
j and output them directly, so that the model outputs a vector12

corresponding to each input vector, or we can feed them into another network to get a single vector or13

scalar output.14

If each f i
is a simple linear layer followed by a nonlinearity �:15
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then the model can be viewed as a feedforward network with layers16
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The key idea is that T is dynamically sized, and the matrix can be dynamically sized because the18

blocks are applied by type, rather than by coordinate.19
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2 Problem Formulation33

We consider the setting where we have M agents, all cooperating to maximize reward R in some34

environment. We make the simplifying assumption that each agent receives R, independent of their35

contribution. In this setting, there is no difference between each agent having its own controller, or36

viewing them as pieces of a larger model controlling all agents. Taking the latter perspective, our37

controller is a large feed-forward neural network that maps inputs for all agents to their actions, each38

agent occupying a subset of units. A specific connectivity structure between layers (a) instantiates the39

broadcast communication channel between agents and (b) propagates the agent state in the manner of40

an RNN.41

Because the agents will receive reward, but not necessarily supervision for each action, reinforcement42

learning is used to maximize expected future reward. We explore two forms of communication within43

the controller: (i) discrete and (ii) continuous. In the former case, communication is an action, and44

will be treated as such by the reinforcement learning. In the continuous case, the signals passed45

between agents are no different than hidden states in a neural network; thus credit assignment for the46

communication can be performed using standard backpropagation (within the outer RL loop).47

We use policy gradient [33] with a state specific baseline for delivering a gradient to the model.48

Denote the states in an episode by s(1), ..., s(T ), and the actions taken at each of those states49

as a(1), ..., a(T ), where T is the length of the episode. The baseline is a scalar function of the50

states b(s, ✓), computed via an extra head on the model producing the action probabilities. Beside51

maximizing the expected reward with policy gradient, the models are also trained to minimize the52

distance between the baseline value and actual reward. Thus, after finishing an episode, we update53

the model parameters ✓ by54
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Here r(t) is reward given at time t, and the hyperparameter ↵ is for balancing the reward and the55

baseline objectives, set to 0.03 in all experiments.56

3 Model57

We now describe the model used to compute p(a(t)|s(t), ✓) at a given time t (ommiting the time58

index for brevity). Let s
j

be the jth agent’s view of the state of the environment. The input to the59

controller is the concatenation of all state-views s = {s1, ..., sJ

}, and the controller � is a mapping60

a = �(s), where the output a is a concatenation of discrete actions a = {a1, ..., aJ

} for each agent.61

Note that this single controller � encompasses the individual controllers for each agents, as well as62

the communication between agents.63

One obvious choice for � is a fully-connected multi-layer neural network, which could extract64

features h from s and use them to predict good actions with our RL framework. This model would65

allow agents to communicate with each other and share views of the environment. However, it66

is inflexible with respect to the composition and number of agents it controls; cannot deal well67

with agents joining and leaving the group and even the order of the agents must be fixed. On the68

other hand, if no communication is used then we can write a = {�(s1), ..., �(s
J

)}, where � is a69

per-agent controller applied independently. This communication-free model satisfies the flexibility70

requirements1, but is not able to coordinate their actions.71

3.1 Controller Structure72

We now detail the architecture for � that has the modularity of the communication-free model but73

still allows communication. � is built from modules f i, which take the form of multilayer neural74

networks. Here i 2 {0, .., K}, where K is the number of communication layers in the network.75

Each f i takes two input vectors for each agent j: the hidden state hi

j

and the communication ci

j

,76

and outputs a vector hi+1
j

. The main body of the model then takes as input the concatenated vectors77

1Assuming sj includes the identity of agent j.
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= 0 for all j, and i 2 {0, .., K} (we will call K the number of hops in the network).11

If desired, we can take the final hK
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and output them directly, so that the model outputs a vector12

corresponding to each input vector, or we can feed them into another network to get a single vector or13

scalar output.14
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The key idea is that T is dynamically sized, and the matrix can be dynamically sized because the18

blocks are applied by type, rather than by coordinate.19
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2 Problem Formulation33

We consider the setting where we have M agents, all cooperating to maximize reward R in some34

environment. We make the simplifying assumption that each agent receives R, independent of their35

contribution. In this setting, there is no difference between each agent having its own controller, or36

viewing them as pieces of a larger model controlling all agents. Taking the latter perspective, our37

controller is a large feed-forward neural network that maps inputs for all agents to their actions, each38

agent occupying a subset of units. A specific connectivity structure between layers (a) instantiates the39

broadcast communication channel between agents and (b) propagates the agent state in the manner of40

an RNN.41

Because the agents will receive reward, but not necessarily supervision for each action, reinforcement42

learning is used to maximize expected future reward. We explore two forms of communication within43

the controller: (i) discrete and (ii) continuous. In the former case, communication is an action, and44

will be treated as such by the reinforcement learning. In the continuous case, the signals passed45

between agents are no different than hidden states in a neural network; thus credit assignment for the46

communication can be performed using standard backpropagation (within the outer RL loop).47

We use policy gradient [33] with a state specific baseline for delivering a gradient to the model.48

Denote the states in an episode by s(1), ..., s(T ), and the actions taken at each of those states49

as a(1), ..., a(T ), where T is the length of the episode. The baseline is a scalar function of the50

states b(s, ✓), computed via an extra head on the model producing the action probabilities. Beside51

maximizing the expected reward with policy gradient, the models are also trained to minimize the52

distance between the baseline value and actual reward. Thus, after finishing an episode, we update53

the model parameters ✓ by54
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Here r(t) is reward given at time t, and the hyperparameter ↵ is for balancing the reward and the55

baseline objectives, set to 0.03 in all experiments.56

3 Model57

We now describe the model used to compute p(a(t)|s(t), ✓) at a given time t (ommiting the time58

index for brevity). Let s
j

be the jth agent’s view of the state of the environment. The input to the59

controller is the concatenation of all state-views s = {s1, ..., sJ

}, and the controller � is a mapping60

a = �(s), where the output a is a concatenation of discrete actions a = {a1, ..., aJ

} for each agent.61

Note that this single controller � encompasses the individual controllers for each agents, as well as62

the communication between agents.63

One obvious choice for � is a fully-connected multi-layer neural network, which could extract64

features h from s and use them to predict good actions with our RL framework. This model would65

allow agents to communicate with each other and share views of the environment. However, it66

is inflexible with respect to the composition and number of agents it controls; cannot deal well67

with agents joining and leaving the group and even the order of the agents must be fixed. On the68

other hand, if no communication is used then we can write a = {�(s1), ..., �(s
J

)}, where � is a69

per-agent controller applied independently. This communication-free model satisfies the flexibility70

requirements1, but is not able to coordinate their actions.71

3.1 Controller Structure72

We now detail the architecture for � that has the modularity of the communication-free model but73

still allows communication. � is built from modules f i, which take the form of multilayer neural74

networks. Here i 2 {0, .., K}, where K is the number of communication layers in the network.75

Each f i takes two input vectors for each agent j: the hidden state hi

j

and the communication ci

j

,76

and outputs a vector hi+1
j

. The main body of the model then takes as input the concatenated vectors77

1Assuming sj includes the identity of agent j.
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The key idea is that T is dynamically sized. First, the number of agents may vary. This motivates83

the the normalizing factor J � 1 in equation (2), which resacles the communication vector by the84

number of communicating agents. Second, the blocks are applied based on category, rather than by85

coordinate. In this simple form of the model “category” refers to either “self” or “teammate”; but as86

we will see below, the communication architecture can be more complicated than “broadcast to all”,87

and so may require more categories. Note also that T i is permutation invariant, thus the order of the88

agents does not matter.89
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actions. q(.) takes the form of a single layer network, followed by a softmax. To produce a discrete95

action, we sample from the this distribution.96

Thus the entire model, which we call a Communication Neural Net (CommNN), (i) takes the state-97

view of all agents s, passes it through the encoder h0
= p(s), (ii) iterates h and c in equations (1)98

and (2) to obain hK , (iii) samples actions a for all agents, according to q(hK

).99

3.2 Model Extensions100

Local Connectivity: An alternative to the broadcast framework described above is to allow agents101

to communicate to others within a certain range. Let N(j) be the set of agents present within102

communication range of agent j. Then (2) becomes:103

ci+1
j

=

1

|N(j)|
X

j

02N(j)

hi+1
j

0 . (3)

3

h0
= [h0

1, h
0
2, ..., h

0
J

], and computes:78

hi+1
j

= f i

(hi

j

, ci

j

) (1)

79

ci+1
j

=

1

J � 1

X

j

0 6=j

hi+1
j

0 . (2)

In the case that f i is a single linear layer followed by a nonlinearity �, we have: hi+1
j

= �(Hihi

j

+80

Cici

j

) and the model can be viewed as a feedforward network with layers hi+1
= �(T ihi

) where hi81

is the concatenation of all hi

j

and T takes the block form:82

T i

=

�

�����

Hi Ci Ci ... Ci

Ci Hi Ci ... Ci

Ci Ci Hi ... Ci

...
...

...
. . .

...
Ci Ci Ci ... Hi

�

�����
,

Connecting Neural Models

Anonymous Author(s)
Affiliation
Address
email

Abstract

abstract1

1 Introduction2

In this work we make two contributions. First, we simplify and extend the graph neural network3

architecture of ??. Second, we show how this architecture can be used to control groups of cooperating4

agents.5

2 Model6

The simplest form of the model consists of multilayer neural networks f i that take as input vectors7

hi and ci and output a vector hi+1. The model takes as input a set of vectors {h0
1, h

0
2, ..., h

0
m

}, and8

computes9

hi+1
j

= f i

(hi

j

, ci

j

)

10

ci+1
j

=

X

j

0 6=j

hi+1
j

0 ;

We set c0
j

= 0 for all j, and i 2 {0, .., K} (we will call K the number of hops in the network).11

If desired, we can take the final hK

j

and output them directly, so that the model outputs a vector12

corresponding to each input vector, or we can feed them into another network to get a single vector or13

scalar output.14

If each f i is a simple linear layer followed by a nonlinearity �:15

hi+1
j

= �(Aihi
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then the model can be viewed as a feedforward network with layers16
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= �(T iHi
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where T is written in block form17

T i
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�

�����

Ai Bi Bi ... Bi

Bi Ai Bi ... Bi

Bi Bi Ai ... Bi

...
...

...
. . .

...
Bi Bi Bi ... Ai

�

�����
.

The key idea is that T is dynamically sized, and the matrix can be dynamically sized because the18

blocks are applied by type, rather than by coordinate.19
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2 Problem Formulation33

We consider the setting where we have M agents, all cooperating to maximize reward R in some34

environment. We make the simplifying assumption that each agent receives R, independent of their35

contribution. In this setting, there is no difference between each agent having its own controller, or36

viewing them as pieces of a larger model controlling all agents. Taking the latter perspective, our37

controller is a large feed-forward neural network that maps inputs for all agents to their actions, each38

agent occupying a subset of units. A specific connectivity structure between layers (a) instantiates the39

broadcast communication channel between agents and (b) propagates the agent state in the manner of40

an RNN.41

Because the agents will receive reward, but not necessarily supervision for each action, reinforcement42

learning is used to maximize expected future reward. We explore two forms of communication within43

the controller: (i) discrete and (ii) continuous. In the former case, communication is an action, and44

will be treated as such by the reinforcement learning. In the continuous case, the signals passed45

between agents are no different than hidden states in a neural network; thus credit assignment for the46

communication can be performed using standard backpropagation (within the outer RL loop).47

We use policy gradient [33] with a state specific baseline for delivering a gradient to the model.48

Denote the states in an episode by s(1), ..., s(T ), and the actions taken at each of those states49

as a(1), ..., a(T ), where T is the length of the episode. The baseline is a scalar function of the50

states b(s, ✓), computed via an extra head on the model producing the action probabilities. Beside51

maximizing the expected reward with policy gradient, the models are also trained to minimize the52

distance between the baseline value and actual reward. Thus, after finishing an episode, we update53

the model parameters ✓ by54

�✓ =

TX

t=1

2

4@ log p(a(t)|s(t), ✓)
@✓

 
TX

i=t

r(i) � b(s(t), ✓)

!
� ↵

@

@✓

 
TX

i=t

r(i) � b(s(t), ✓)

!2
3

5 .

Here r(t) is reward given at time t, and the hyperparameter ↵ is for balancing the reward and the55

baseline objectives, set to 0.03 in all experiments.56

3 Model57

We now describe the model used to compute p(a(t)|s(t), ✓) at a given time t (ommiting the time58

index for brevity). Let s
j

be the jth agent’s view of the state of the environment. The input to the59

controller is the concatenation of all state-views s = {s1, ..., sJ

}, and the controller � is a mapping60

a = �(s), where the output a is a concatenation of discrete actions a = {a1, ..., aJ

} for each agent.61

Note that this single controller � encompasses the individual controllers for each agents, as well as62

the communication between agents.63

One obvious choice for � is a fully-connected multi-layer neural network, which could extract64

features h from s and use them to predict good actions with our RL framework. This model would65

allow agents to communicate with each other and share views of the environment. However, it66

is inflexible with respect to the composition and number of agents it controls; cannot deal well67

with agents joining and leaving the group and even the order of the agents must be fixed. On the68

other hand, if no communication is used then we can write a = {�(s1), ..., �(s
J

)}, where � is a69

per-agent controller applied independently. This communication-free model satisfies the flexibility70

requirements1, but is not able to coordinate their actions.71

3.1 Controller Structure72

We now detail the architecture for � that has the modularity of the communication-free model but73

still allows communication. � is built from modules f i, which take the form of multilayer neural74

networks. Here i 2 {0, .., K}, where K is the number of communication layers in the network.75

Each f i takes two input vectors for each agent j: the hidden state hi

j

and the communication ci

j

,76

and outputs a vector hi+1
j

. The main body of the model then takes as input the concatenated vectors77

1Assuming sj includes the identity of agent j.
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The key idea is that T is dynamically sized. First, the number of agents may vary. This motivates83

the the normalizing factor J � 1 in equation (2), which resacles the communication vector by the84

number of communicating agents. Second, the blocks are applied based on category, rather than by85

coordinate. In this simple form of the model “category” refers to either “self” or “teammate”; but as86

we will see below, the communication architecture can be more complicated than “broadcast to all”,87

and so may require more categories. Note also that T i is permutation invariant, thus the order of the88

agents does not matter.89

At the first layer of the model an encoder function h0
j

= p(s
j

) is used. This takes as input state-view90

s
j

and outputs feature vector h0
j

(in Rd0 for some d0). The form of the encoder is problem dependent,91

but for most of our tasks they consist of a lookup-table embedding (or bags of vectors thereof). Unless92

otherwise noted, c0
j

= 0 for all j.93

At the output of the model, a decoder function q(hK

j

) is used to output a distribution over the space of94

actions. q(.) takes the form of a single layer network, followed by a softmax. To produce a discrete95

action, we sample from the this distribution.96

Thus the entire model, which we call a Communication Neural Net (CommNN), (i) takes the state-97

view of all agents s, passes it through the encoder h0
= p(s), (ii) iterates h and c in equations (1)98

and (2) to obain hK , (iii) samples actions a for all agents, according to q(hK

).99

3.2 Model Extensions100

Local Connectivity: An alternative to the broadcast framework described above is to allow agents101

to communicate to others within a certain range. Let N(j) be the set of agents present within102

communication range of agent j. Then (2) becomes:103

ci+1
j

=

1

|N(j)|
X

j

02N(j)

hi+1
j

0 . (3)
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We set c0
j

= 0 for all j, and i 2 {0, .., K} (we will call K the number of hops in the network).11

If desired, we can take the final hK

j

and output them directly, so that the model outputs a vector12

corresponding to each input vector, or we can feed them into another network to get a single vector or13

scalar output.14

If each f i is a simple linear layer followed by a nonlinearity �:15

hi+1
j

= �(Aihi

j

+ Bici

j

),

then the model can be viewed as a feedforward network with layers16

Hi+1
= �(T iHi

),

where T is written in block form17

T i

=

�

�����

Ai Bi Bi ... Bi

Bi Ai Bi ... Bi

Bi Bi Ai ... Bi

...
...

...
. . .

...
Bi Bi Bi ... Ai

�

�����
.

The key idea is that T is dynamically sized, and the matrix can be dynamically sized because the18

blocks are applied by type, rather than by coordinate.19

Submitted to 29th Conference on Neural Information Processing Systems (NIPS 2016). Do not distribute.

CommNN model  th communication step Module for agent 

Connecting Neural Models

Anonymous Author(s)
Affiliation
Address
email

Abstract

abstract1

1 Introduction2

In this work we make two contributions. First, we simplify and extend the graph neural network3

architecture of ??. Second, we show how this architecture can be used to control groups of cooperating4

agents.5

2 Model6

The simplest form of the model consists of multilayer neural networks f i that take as input vectors7

hi and ci and output a vector hi+1. The model takes as input a set of vectors {h0
1, h

0
2, ..., h

0
m

}, and8

computes9

hi+1
j

= f i

(hi

j

, ci

j

)

10

ci+1
j

=

X

j

0 6=j

hi+1
j

0 ;

We set c0
j

= 0 for all j, and i 2 {0, .., K} (we will call K the number of hops in the network).11

If desired, we can take the final hK

j

and output them directly, so that the model outputs a vector12

corresponding to each input vector, or we can feed them into another network to get a single vector or13

scalar output.14

If each f i is a simple linear layer followed by a nonlinearity �:15

hi+1
j

= �(Aihi

j

+ Bici

j

),

then the model can be viewed as a feedforward network with layers16

Hi+1
= �(T iHi

),

where T is written in block form17

T i

=

�

�����

Ai Bi Bi ... Bi

Bi Ai Bi ... Bi

Bi Bi Ai ... Bi

...
...

...
. . .

...
Bi Bi Bi ... Ai

�

�����
.

The key idea is that T is dynamically sized, and the matrix can be dynamically sized because the18

blocks are applied by type, rather than by coordinate.19

Submitted to 29th Conference on Neural Information Processing Systems (NIPS 2016). Do not distribute.

Connecting Neural Models

Anonymous Author(s)
Affiliation
Address
email

Abstract

abstract1

1 Introduction2

In this work we make two contributions. First, we simplify and extend the graph neural network3

architecture of ??. Second, we show how this architecture can be used to control groups of cooperating4

agents.5

2 Model6

The simplest form of the model consists of multilayer neural networks f i that take as input vectors7

hi and ci and output a vector hi+1. The model takes as input a set of vectors {h0
1, h

0
2, ..., h

0
m

}, and8

computes9

hi+1
j

= f i

(hi

j

, ci

j

)

10

ci+1
j

=

X

j

0 6=j

hi+1
j

0 ;

We set c0
j

= 0 for all j, and i 2 {0, .., K} (we will call K the number of hops in the network).11

If desired, we can take the final hK

j

and output them directly, so that the model outputs a vector12

corresponding to each input vector, or we can feed them into another network to get a single vector or13

scalar output.14

If each f i is a simple linear layer followed by a nonlinearity �:15

hi+1
j

= �(Aihi

j

+ Bici

j

),

then the model can be viewed as a feedforward network with layers16

Hi+1
= �(T iHi

),

where T is written in block form17

T i

=

�

�����

Ai Bi Bi ... Bi

Bi Ai Bi ... Bi

Bi Bi Ai ... Bi

...
...

...
. . .

...
Bi Bi Bi ... Ai

�

�����
.

The key idea is that T is dynamically sized, and the matrix can be dynamically sized because the18

blocks are applied by type, rather than by coordinate.19

Submitted to 29th Conference on Neural Information Processing Systems (NIPS 2016). Do not distribute.

Connecting Neural Models

Anonymous Author(s)
Affiliation
Address
email

Abstract

abstract1

1 Introduction2

In this work we make two contributions. First, we simplify and extend the graph neural network3

architecture of ??. Second, we show how this architecture can be used to control groups of cooperating4

agents.5

2 Model6

The simplest form of the model consists of multilayer neural networks f i that take as input vectors7

hi and ci and output a vector hi+1. The model takes as input a set of vectors {h0
1, h

0
2, ..., h

0
m

}, and8

computes9

hi+1
j

= f i

(hi

j

, ci

j

)

10

ci+1
j

=

X

j

0 6=j

hi+1
j

0 ;

We set c0
j

= 0 for all j, and i 2 {0, .., K} (we will call K the number of hops in the network).11

If desired, we can take the final hK

j

and output them directly, so that the model outputs a vector12

corresponding to each input vector, or we can feed them into another network to get a single vector or13

scalar output.14

If each f i is a simple linear layer followed by a nonlinearity �:15

hi+1
j

= �(Aihi

j

+ Bici

j

),

then the model can be viewed as a feedforward network with layers16

Hi+1
= �(T iHi

),

where T is written in block form17

T i

=

�

�����

Ai Bi Bi ... Bi

Bi Ai Bi ... Bi

Bi Bi Ai ... Bi

...
...

...
. . .

...
Bi Bi Bi ... Ai

�

�����
.

The key idea is that T is dynamically sized, and the matrix can be dynamically sized because the18

blocks are applied by type, rather than by coordinate.19

Submitted to 29th Conference on Neural Information Processing Systems (NIPS 2016). Do not distribute.

Figure 1: An overview of our communication model. Left: view of module f i for a single agent j.
Note that the parameters are shared across all agents. Middle: a single communication step, where
each agents modules propagate their internal state h, as well as broadcasting a communication vector
c on a common channel (shown in red). Right: full model, showing input states s for each agent, two
communication steps and the output actions for each agent.

A key point is that T is dynamically sized since the number of agents may vary. This motivates the
the normalizing factor J � 1 in equation (3), which rescales the communication vector by the number
of communicating agents. Note also that T i is permutation invariant, thus the order of the agents
does not matter.

At the first layer of the model an encoder function h0
j

= r(s
j

) is used. This takes as input state-view
s

j

and outputs feature vector h0
j

(in Rd0 for some d0). The form of the encoder is problem dependent,
but for most of our tasks it is a single layer neural network. Unless otherwise noted, c0

j

= 0 for all j.
At the output of the model, a decoder function q(hK

j

) is used to output a distribution over the space of
actions. q(.) takes the form of a single layer network, followed by a softmax. To produce a discrete
action, we sample from the this distribution: a

j

⇠ q(hK

j

).

Thus the entire model (shown in Fig. 1), which we call a Communication Neural Net (CommNN), (i)
takes the state-view of all agents s, passes it through the encoder h0

= r(s), (ii) iterates h and c in
equations (2) and (3) to obtain hK , (iii) samples actions a for all agents, according to q(hK

). We refer
to this type communication as continuous type because communication is based on continuous-valued
vectors.

3.2 Model Extensions

Local Connectivity: An alternative to the broadcast framework described above is to allow agents
to communicate to others within a certain range. Let N(j) be the set of agents present within
communication range of agent j. Then (3) becomes:

ci+1
j

=

1

|N(j)|
X

j

02N(j)

hi+1
j

0 . (4)

As the agents move, enter and exit and the environment, N(j) will change over time. In this setting,
our model has a natural interpretation as a dynamic graph, with N(j) being the set of vertices
connected to vertex j at the current time. The edges within the graph represent the communication
channel between agents, with (4) being equivalent to belief propagation [22]. Furthermore, the use of
multi-layer nets at each vertex makes our model similar to an instantiation of the GGSNN work of Li
et al. [14].

Temporal Recurrence: We also explore having the network be a recurrent neural network (RNN).
This is achieved by simply replacing the communication step i in Eqn. (2) and (3) by a time step t,

3

Learnable parameters
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Table 3 shows the win rate of different module choices with various types of model. Among
different modules, the LSTM achieved the best performance. Continuous communication with
CommNet improved all module types. Relative to the independent controller, the fully-connected
model degraded performance, but the discrete communication improved LSTM module type. We
also explored several variations of the task: varying the number of agents in each team by setting
m = 3, 10, and increasing visual range of agents to 5 ⇥ 5 area. The result on those tasks are shown
on the right side of Table 3. Using CommNet model consistently improves the win rate, even with
the greater environment observability of the 5⇥5 vision case.
4.4 bAbI Tasks
We apply our model to the bAbI [36] toy Q & A dataset, which consists of 20 tasks each requiring
different kind of reasoning. The goal is to answer a question after reading a short story. We can
formulate this as a multi-agent task by giving each sentence of the story its own agent. Communication
among agents allows them to exchange useful information necessary to answer the question.

The input is {s1, s2, ..., sJ

, q}, where s
j

is j’th sentence of the story, and q is the question sentence.
We use the same encoder representation as [29] to convert them to vectors. The f(.) module consists
of a two-layer MLP with ReLU non-linearities. After K = 2 communication steps, we add the
final hidden states together and pass it through a softmax decoder layer to sample an output word y.
The model is trained in a supervised fashion using a cross-entropy loss between y and the correct
answer y⇤. The hidden layer size is set to 100 and weights are initialized from N(0, 0.2). We train
the model for 100 epochs with learning rate 0.003 and mini-batch size 32 with Adam optimizer [12]
(�1 = 0.9, �2 = 0.99, ✏ = 10�6). We used 10% of training data as validation set to find optimal
hyper-parameters for the model.

Results on the 10K version of the bAbI task are shown in Table 4, along with other baselines (see
Appendix E for a detailed breakdown). Our model outperforms the LSTM baseline, but is worse
than the MemN2N model [29], which is specifically designed to solve reasoning over long stories.
However, it successfully solves most of the tasks, including ones that require information sharing
between two or more agents through communication.

Mean error (%) Failed tasks (err. > 5%)
LSTM [29] 36.4 16
MemN2N [29] 4.2 3
DMN+ [38] 2.8 1
Independent (MLP module) 15.2 9
CommNet (MLP module) 7.1 3

Table 4: Experimental results on bAbI tasks.

5 Discussion and Future Work
We have introduced CommNet, a simple controller for MARL that is able to learn continuous
communication between a dynamically changing set of agents. Evaluations on four diverse tasks
clearly show the model outperforms models without communication, fully-connected models, and
models using discrete communication. Despite the simplicity of the broadcast channel, examination
of the traffic task reveals the model to have learned a sparse communication protocol that conveys
meaningful information between agents. Code for our model (and baselines) can be found at
http://cims.nyu.edu/~sainbar/commnet/.

One aspect of our model that we did not fully exploit is its ability to handle heterogenous agent types
and we hope to explore this in future work. Furthermore, we believe the model will scale gracefully
to large numbers of agents, perhaps requiring more sophisticated connectivity structures; we also
leave this to future work.
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2 Problem Formulation33

We consider the setting where we have M agents, all cooperating to maximize reward R in some34

environment. We make the simplifying assumption that each agent receives R, independent of their35

contribution. In this setting, there is no difference between each agent having its own controller, or36

viewing them as pieces of a larger model controlling all agents. Taking the latter perspective, our37

controller is a large feed-forward neural network that maps inputs for all agents to their actions, each38

agent occupying a subset of units. A specific connectivity structure between layers (a) instantiates the39

broadcast communication channel between agents and (b) propagates the agent state in the manner of40

an RNN.41

Because the agents will receive reward, but not necessarily supervision for each action, reinforcement42

learning is used to maximize expected future reward. We explore two forms of communication within43

the controller: (i) discrete and (ii) continuous. In the former case, communication is an action, and44

will be treated as such by the reinforcement learning. In the continuous case, the signals passed45

between agents are no different than hidden states in a neural network; thus credit assignment for the46

communication can be performed using standard backpropagation (within the outer RL loop).47

We use policy gradient [33] with a state specific baseline for delivering a gradient to the model.48

Denote the states in an episode by s(1), ..., s(T ), and the actions taken at each of those states49

as a(1), ..., a(T ), where T is the length of the episode. The baseline is a scalar function of the50

states b(s, ✓), computed via an extra head on the model producing the action probabilities. Beside51

maximizing the expected reward with policy gradient, the models are also trained to minimize the52

distance between the baseline value and actual reward. Thus, after finishing an episode, we update53

the model parameters ✓ by54
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Here r(t) is reward given at time t, and the hyperparameter ↵ is for balancing the reward and the55

baseline objectives, set to 0.03 in all experiments.56

3 Model57

We now describe the model used to compute p(a(t)|s(t), ✓) at a given time t (ommiting the time58

index for brevity). Let s
j

be the jth agent’s view of the state of the environment. The input to the59

controller is the concatenation of all state-views s = {s1, ..., sJ

}, and the controller � is a mapping60

a = �(s), where the output a is a concatenation of discrete actions a = {a1, ..., aJ

} for each agent.61

Note that this single controller � encompasses the individual controllers for each agents, as well as62

the communication between agents.63

One obvious choice for � is a fully-connected multi-layer neural network, which could extract64

features h from s and use them to predict good actions with our RL framework. This model would65

allow agents to communicate with each other and share views of the environment. However, it66

is inflexible with respect to the composition and number of agents it controls; cannot deal well67

with agents joining and leaving the group and even the order of the agents must be fixed. On the68

other hand, if no communication is used then we can write a = {�(s1), ..., �(s
J

)}, where � is a69

per-agent controller applied independently. This communication-free model satisfies the flexibility70

requirements1, but is not able to coordinate their actions.71

3.1 Controller Structure72

We now detail the architecture for � that has the modularity of the communication-free model but73

still allows communication. � is built from modules f i, which take the form of multilayer neural74

networks. Here i 2 {0, .., K}, where K is the number of communication layers in the network.75

Each f i takes two input vectors for each agent j: the hidden state hi

j

and the communication ci

j

,76

and outputs a vector hi+1
j

. The main body of the model then takes as input the concatenated vectors77

1Assuming sj includes the identity of agent j.
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viewing them as pieces of a larger model controlling all agents. Taking the latter perspective, our37

controller is a large feed-forward neural network that maps inputs for all agents to their actions, each38

agent occupying a subset of units. A specific connectivity structure between layers (a) instantiates the39

broadcast communication channel between agents and (b) propagates the agent state in the manner of40

an RNN.41

Because the agents will receive reward, but not necessarily supervision for each action, reinforcement42

learning is used to maximize expected future reward. We explore two forms of communication within43

the controller: (i) discrete and (ii) continuous. In the former case, communication is an action, and44

will be treated as such by the reinforcement learning. In the continuous case, the signals passed45

between agents are no different than hidden states in a neural network; thus credit assignment for the46

communication can be performed using standard backpropagation (within the outer RL loop).47

We use policy gradient [33] with a state specific baseline for delivering a gradient to the model.48

Denote the states in an episode by s(1), ..., s(T ), and the actions taken at each of those states49

as a(1), ..., a(T ), where T is the length of the episode. The baseline is a scalar function of the50

states b(s, ✓), computed via an extra head on the model producing the action probabilities. Beside51

maximizing the expected reward with policy gradient, the models are also trained to minimize the52

distance between the baseline value and actual reward. Thus, after finishing an episode, we update53

the model parameters ✓ by54

�✓ =

TX

t=1

2

4@ log p(a(t)|s(t), ✓)
@✓

 
TX

i=t

r(i) � b(s(t), ✓)

!
� ↵

@
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r(i) � b(s(t), ✓)

!2
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5 .

Here r(t) is reward given at time t, and the hyperparameter ↵ is for balancing the reward and the55

baseline objectives, set to 0.03 in all experiments.56

3 Model57

We now describe the model used to compute p(a(t)|s(t), ✓) at a given time t (ommiting the time58

index for brevity). Let s
j

be the jth agent’s view of the state of the environment. The input to the59

controller is the concatenation of all state-views s = {s1, ..., sJ

}, and the controller � is a mapping60

a = �(s), where the output a is a concatenation of discrete actions a = {a1, ..., aJ

} for each agent.61

Note that this single controller � encompasses the individual controllers for each agents, as well as62

the communication between agents.63

One obvious choice for � is a fully-connected multi-layer neural network, which could extract64

features h from s and use them to predict good actions with our RL framework. This model would65

allow agents to communicate with each other and share views of the environment. However, it66

is inflexible with respect to the composition and number of agents it controls; cannot deal well67

with agents joining and leaving the group and even the order of the agents must be fixed. On the68

other hand, if no communication is used then we can write a = {�(s1), ..., �(s
J

)}, where � is a69

per-agent controller applied independently. This communication-free model satisfies the flexibility70

requirements1, but is not able to coordinate their actions.71

3.1 Controller Structure72

We now detail the architecture for � that has the modularity of the communication-free model but73

still allows communication. � is built from modules f i, which take the form of multilayer neural74

networks. Here i 2 {0, .., K}, where K is the number of communication layers in the network.75

Each f i takes two input vectors for each agent j: the hidden state hi

j

and the communication ci

j

,76

and outputs a vector hi+1
j

. The main body of the model then takes as input the concatenated vectors77

1Assuming sj includes the identity of agent j.
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The key idea is that T is dynamically sized. First, the number of agents may vary. This motivates83

the the normalizing factor J � 1 in equation (2), which resacles the communication vector by the84

number of communicating agents. Second, the blocks are applied based on category, rather than by85

coordinate. In this simple form of the model “category” refers to either “self” or “teammate”; but as86

we will see below, the communication architecture can be more complicated than “broadcast to all”,87

and so may require more categories. Note also that T i is permutation invariant, thus the order of the88

agents does not matter.89

At the first layer of the model an encoder function h0
j

= p(s
j

) is used. This takes as input state-view90

s
j

and outputs feature vector h0
j

(in Rd0 for some d0). The form of the encoder is problem dependent,91

but for most of our tasks they consist of a lookup-table embedding (or bags of vectors thereof). Unless92

otherwise noted, c0
j

= 0 for all j.93

At the output of the model, a decoder function q(hK

j

) is used to output a distribution over the space of94

actions. q(.) takes the form of a single layer network, followed by a softmax. To produce a discrete95

action, we sample from the this distribution.96

Thus the entire model, which we call a Communication Neural Net (CommNN), (i) takes the state-97

view of all agents s, passes it through the encoder h0
= p(s), (ii) iterates h and c in equations (1)98

and (2) to obain hK , (iii) samples actions a for all agents, according to q(hK

).99

3.2 Model Extensions100

Local Connectivity: An alternative to the broadcast framework described above is to allow agents101

to communicate to others within a certain range. Let N(j) be the set of agents present within102

communication range of agent j. Then (2) becomes:103
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In the case that f i is a single linear layer followed by a nonlinearity �, we have: hi+1
j

= �(Hihi

j

+80

Cici

j

) and the model can be viewed as a feedforward network with layers hi+1
= �(T ihi

) where hi81

is the concatenation of all hi

j

and T takes the block form:82
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In this work we make two contributions. First, we simplify and extend the graph neural network3

architecture of ??. Second, we show how this architecture can be used to control groups of cooperating4

agents.5

2 Model6

The simplest form of the model consists of multilayer neural networks f i that take as input vectors7

hi and ci and output a vector hi+1. The model takes as input a set of vectors {h0
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}, and8
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We set c0
j

= 0 for all j, and i 2 {0, .., K} (we will call K the number of hops in the network).11

If desired, we can take the final hK

j

and output them directly, so that the model outputs a vector12

corresponding to each input vector, or we can feed them into another network to get a single vector or13

scalar output.14

If each f i is a simple linear layer followed by a nonlinearity �:15

hi+1
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+ Bici

j

),

then the model can be viewed as a feedforward network with layers16
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),

where T is written in block form17
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The key idea is that T is dynamically sized, and the matrix can be dynamically sized because the18

blocks are applied by type, rather than by coordinate.19
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2 Problem Formulation33

We consider the setting where we have M agents, all cooperating to maximize reward R in some34

environment. We make the simplifying assumption that each agent receives R, independent of their35

contribution. In this setting, there is no difference between each agent having its own controller, or36

viewing them as pieces of a larger model controlling all agents. Taking the latter perspective, our37

controller is a large feed-forward neural network that maps inputs for all agents to their actions, each38

agent occupying a subset of units. A specific connectivity structure between layers (a) instantiates the39

broadcast communication channel between agents and (b) propagates the agent state in the manner of40

an RNN.41

Because the agents will receive reward, but not necessarily supervision for each action, reinforcement42

learning is used to maximize expected future reward. We explore two forms of communication within43

the controller: (i) discrete and (ii) continuous. In the former case, communication is an action, and44

will be treated as such by the reinforcement learning. In the continuous case, the signals passed45

between agents are no different than hidden states in a neural network; thus credit assignment for the46

communication can be performed using standard backpropagation (within the outer RL loop).47

We use policy gradient [33] with a state specific baseline for delivering a gradient to the model.48

Denote the states in an episode by s(1), ..., s(T ), and the actions taken at each of those states49

as a(1), ..., a(T ), where T is the length of the episode. The baseline is a scalar function of the50

states b(s, ✓), computed via an extra head on the model producing the action probabilities. Beside51

maximizing the expected reward with policy gradient, the models are also trained to minimize the52

distance between the baseline value and actual reward. Thus, after finishing an episode, we update53

the model parameters ✓ by54

�✓ =

TX

t=1
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4@ log p(a(t)|s(t), ✓)
@✓
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r(i) � b(s(t), ✓)
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Here r(t) is reward given at time t, and the hyperparameter ↵ is for balancing the reward and the55

baseline objectives, set to 0.03 in all experiments.56

3 Model57

We now describe the model used to compute p(a(t)|s(t), ✓) at a given time t (ommiting the time58

index for brevity). Let s
j

be the jth agent’s view of the state of the environment. The input to the59

controller is the concatenation of all state-views s = {s1, ..., sJ

}, and the controller � is a mapping60

a = �(s), where the output a is a concatenation of discrete actions a = {a1, ..., aJ

} for each agent.61

Note that this single controller � encompasses the individual controllers for each agents, as well as62

the communication between agents.63

One obvious choice for � is a fully-connected multi-layer neural network, which could extract64

features h from s and use them to predict good actions with our RL framework. This model would65

allow agents to communicate with each other and share views of the environment. However, it66

is inflexible with respect to the composition and number of agents it controls; cannot deal well67

with agents joining and leaving the group and even the order of the agents must be fixed. On the68

other hand, if no communication is used then we can write a = {�(s1), ..., �(s
J

)}, where � is a69

per-agent controller applied independently. This communication-free model satisfies the flexibility70

requirements1, but is not able to coordinate their actions.71

3.1 Controller Structure72

We now detail the architecture for � that has the modularity of the communication-free model but73

still allows communication. � is built from modules f i, which take the form of multilayer neural74

networks. Here i 2 {0, .., K}, where K is the number of communication layers in the network.75

Each f i takes two input vectors for each agent j: the hidden state hi

j

and the communication ci

j

,76

and outputs a vector hi+1
j

. The main body of the model then takes as input the concatenated vectors77

1Assuming sj includes the identity of agent j.
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The key idea is that T is dynamically sized. First, the number of agents may vary. This motivates83

the the normalizing factor J � 1 in equation (2), which resacles the communication vector by the84

number of communicating agents. Second, the blocks are applied based on category, rather than by85

coordinate. In this simple form of the model “category” refers to either “self” or “teammate”; but as86

we will see below, the communication architecture can be more complicated than “broadcast to all”,87

and so may require more categories. Note also that T i is permutation invariant, thus the order of the88

agents does not matter.89

At the first layer of the model an encoder function h0
j

= p(s
j

) is used. This takes as input state-view90

s
j

and outputs feature vector h0
j

(in Rd0 for some d0). The form of the encoder is problem dependent,91

but for most of our tasks they consist of a lookup-table embedding (or bags of vectors thereof). Unless92

otherwise noted, c0
j

= 0 for all j.93

At the output of the model, a decoder function q(hK

j

) is used to output a distribution over the space of94

actions. q(.) takes the form of a single layer network, followed by a softmax. To produce a discrete95

action, we sample from the this distribution.96

Thus the entire model, which we call a Communication Neural Net (CommNN), (i) takes the state-97

view of all agents s, passes it through the encoder h0
= p(s), (ii) iterates h and c in equations (1)98

and (2) to obain hK , (iii) samples actions a for all agents, according to q(hK

).99

3.2 Model Extensions100

Local Connectivity: An alternative to the broadcast framework described above is to allow agents101
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Figure 1: An overview of our communication model. Left: view of module f i for a single agent j.
Note that the parameters are shared across all agents. Middle: a single communication step, where
each agents modules propagate their internal state h, as well as broadcasting a communication vector
c on a common channel (shown in red). Right: full model, showing input states s for each agent, two
communication steps and the output actions for each agent.

A key point is that T is dynamically sized since the number of agents may vary. This motivates the
the normalizing factor J � 1 in equation (3), which rescales the communication vector by the number
of communicating agents. Note also that T i is permutation invariant, thus the order of the agents
does not matter.

At the first layer of the model an encoder function h0
j

= r(s
j

) is used. This takes as input state-view
s

j

and outputs feature vector h0
j

(in Rd0 for some d0). The form of the encoder is problem dependent,
but for most of our tasks it is a single layer neural network. Unless otherwise noted, c0

j

= 0 for all j.
At the output of the model, a decoder function q(hK

j

) is used to output a distribution over the space of
actions. q(.) takes the form of a single layer network, followed by a softmax. To produce a discrete
action, we sample from the this distribution: a

j

⇠ q(hK

j

).

Thus the entire model (shown in Fig. 1), which we call a Communication Neural Net (CommNN), (i)
takes the state-view of all agents s, passes it through the encoder h0

= r(s), (ii) iterates h and c in
equations (2) and (3) to obtain hK , (iii) samples actions a for all agents, according to q(hK

). We refer
to this type communication as continuous type because communication is based on continuous-valued
vectors.

3.2 Model Extensions

Local Connectivity: An alternative to the broadcast framework described above is to allow agents
to communicate to others within a certain range. Let N(j) be the set of agents present within
communication range of agent j. Then (3) becomes:

ci+1
j

=

1

|N(j)|
X

j

02N(j)

hi+1
j

0 . (4)

As the agents move, enter and exit and the environment, N(j) will change over time. In this setting,
our model has a natural interpretation as a dynamic graph, with N(j) being the set of vertices
connected to vertex j at the current time. The edges within the graph represent the communication
channel between agents, with (4) being equivalent to belief propagation [22]. Furthermore, the use of
multi-layer nets at each vertex makes our model similar to an instantiation of the GGSNN work of Li
et al. [14].

Temporal Recurrence: We also explore having the network be a recurrent neural network (RNN).
This is achieved by simply replacing the communication step i in Eqn. (2) and (3) by a time step t,

3
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Traffic Junction game

• Cars on fixed routes
• Two actions: gas/brake
• Limited visibility
• Text representation
• Variable # cars (max 20)

• Rewards:
Collision = -10
Delay = -0.01t
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Figure 2: Left: Traffic junction task where agent-controlled cars (colored circles) have to pass the
through the junction without colliding. Middle: A harder version with four connected junctions.
Right: The combat task, where model controlled agents (red circles) fight against enemy bots (blue
circles). In both tasks each agent has limited visibility (orange region), thus is not able to see the
location of all other agents.

Communication Modules
type MLP RNN LSTM
None 20.6± 14.1 19.5± 4.5 9.4± 5.6
Continuous 2.2± 0.6 7.6± 1.4 1.6± 1.0
Dense 12.5± 4.4 - -
Discrete 20.2± 11.2 - -

Communication Other game versions
type Easy (MLP) Hard (RNN)
None 15.8± 12.5 26.9± 6.0
Continuous 0.3± 0.1 22.5± 6.1
Cont. local - 21.1± 3.4
Discrete 1.1± 2.4 - 1%	
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None	
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Table 2: Traffic junction task. Left: failure rates (%) for different types of communication and module func-
tion f(.). Continuous consistently improves performance, over the dense baseline and no communication.
Middle: Game variants. In the easy case, discrete communication does help, but still less than continuous.
On the hard version, local communication (see Section 3.2) does at least as well as broadcasting to all
agents. Right: As visibility in the environment descreases, the importance of communication grows.

where Ct is the number of collisions occurring at time t, and N t is number of cars present. The
simulation is terminated after 40 steps and is classified as a failure if one or more more collisions
have occurred. Details of the input representation, training and other game variations can be found in
Appendix A.

In Table 2, we show the probability of failure of a variety of different module/communication
method pairs. Continuous communication between cars significantly reduces the failure rate for
all module types. Discrete communication did not give any benefit, except for the easy game. We
also tried a dense communication baseline by allowing the matrix T to be arbitrary, resulting in a
single large fully-connected network controlling all agents. However, this did not work as well as
continuous communication (a video showing this model before and after training can be found at
https://youtu.be/onK98y-UNHQ). We also explores how partial visibility within the environment
effects the advantage given by communication. As the vision range of each agent decreases, the
advantage of communication increases. Impressively, with zero visibility (the cars are driving blind)
the continuous communication model is still able to succeed 90% of the time.

5.2.2 Analysis of Communication
We now attempt to understand what the agents communicate when performing the junction task.
We start by recording the hidden state hi

j

of each agent and the corresponding communication
vectors c̃i+1

j

= Ci+1hi

j

(the contribution agent j at step i + 1 makes to the hidden state of other
agents). Fig. 3(left) and Fig. 3(right) show the 2D PCA projections of the communication and hidden
state vectors respectively. These plots show a diverse range of hidden states but far more clustered
communication vectors, many of which are close to zero. This suggests that while the hidden state
carries information, the agent often prefers not to communicate it to the others unless necessary. This
is a possible consequence of the broadcast channel: if everyone talks at the same time, no-one can
understand. See Appendix B for norm of communication vectors and brake locations.

To better understand the meaning behind the communication vectors, we ran the simulation with
only two cars and recorded their communication vectors and locations whenever one of them braked.
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Traffic Junction Results
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Figure 2: Left: Traffic junction task where agent-controlled cars (colored circles) have to pass the
through the junction without colliding. Middle: The combat task, where model controlled agents (red
circles) fight against enemy bots (blue circles). In both tasks each agent has limited visibility (orange
region), thus is not able to see the location of all other agents. Right: As visibility in the environment
decreases, the importance of communication grows in the traffic junction task.

The state vector s
j

for each agent is thus a concatenation of all these vectors, having dimension
32 ⇥ |n| ⇥ |l| ⇥ |r|.
In Table 2(left), we show the probability of failure of a variety of different model � and module
f pairs. Compared to the baseline models, CommNet significantly reduces the failure rate for all
module types, achieving the best performance with LSTM module (a video showing this model
before and after training can be found at http://cims.nyu.edu/~sainbar/commnet).

We also explored how partial visibility within the environment effects the advantage given by
communication. As the vision range of each agent decreases, the advantage of communication
increases as shown in Fig. 2(right). Impressively, with zero visibility (the cars are driving blind) the
CommNet model is still able to succeed 90% of the time.

Table 2(right) shows the results on easy and hard versions of the game. The easy version is a junction
of two one-way roads, while the harder version consists from four connected junctions of two-way
roads. Details of the other game variations can be found in Appendix C. Discrete communication
works well on the easy version, but the CommNet with local connectivity gives the best performance
on the hard case.

4.3.2 Analysis of Communication
We now attempt to understand what the agents communicate when performing the junction task.
We start by recording the hidden state hi

j

of each agent and the corresponding communication
vectors c̃i+1

j

= Ci+1hi

j

(the contribution agent j at step i + 1 makes to the hidden state of other
agents). Fig. 3(left) and Fig. 3(right) show the 2D PCA projections of the communication and hidden
state vectors respectively. These plots show a diverse range of hidden states but far more clustered
communication vectors, many of which are close to zero. This suggests that while the hidden state
carries information, the agent often prefers not to communicate it to the others unless necessary. This
is a possible consequence of the broadcast channel: if everyone talks at the same time, no-one can
understand. See Appendix D for norm of communication vectors and brake locations.

Module f() type
Model � MLP RNN LSTM
Independent 20.6± 14.1 19.5± 4.5 9.4± 5.6
Fully-connected 12.5± 4.4 34.8± 19.7 4.8± 2.4
Discrete comm. 15.8± 9.3 15.2± 2.1 8.4± 3.4

CommNet 2.2± 0.6 7.6± 1.4 1.6± 1.0

Other game versions
Model � Easy (MLP) Hard (RNN)
Independent 15.8± 12.5 26.9± 6.0
Discrete comm. 1.1± 2.4 28.2± 5.7

CommNet 0.3± 0.1 22.5± 6.1
CommNet local - 21.1± 3.4

Table 2: Traffic junction task. Left: failure rates (%) for different types of model and module function
f(.). CommNet consistently improves performance, over the baseline models. Right: Game variants.
In the easy case, discrete communication does help, but still less than CommNet. On the hard version,
local communication (see Section 2.2) does at least as well as broadcasting to all agents.
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How are the agents communicating?

PCA’d communication vectors
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Figure 3: Left: First two principal components of communication vectors c̃ from multiple runs on
the traffic junction task Fig. 2(left). While the majority are “silent” (i.e. have a small norm), distinct
clusters are also present. Middle: for three of these clusters, we probe the model to understand
their meaning (see text for details). Right: First two principal components of hidden state vectors h
from the same runs as on the left, with corresponding color coding. Note how many of the “silent”
communication vectors accompany non-zero hidden state vectors. This shows that the two pathways
carry different information.

Vectors belonging to the clusters A, B & C in Fig. 3(left) were consistently emitted when one of the
cars was in a specific location, shown by the colored circles in Fig. 3(middle) (or pair of locations for
cluster C). They also strongly correlated with the other car braking at the locations indicated in red,
which happen to be relevant to avoiding collision.

5.2.3 Combat Task

We simulate a simple battle involving two opposing teams in a 15 ⇥ 15 grid as shown in Fig. 2(right).
Each team consists of m = 5 agents and their initial positions are sampled uniformly in a 5 ⇥ 5

square around the team center, which is picked uniformly in the grid. At each time step, an agent can
perform one of the following actions: move one cell in one of four directions; attack another agent
by specifying its ID j (there are m attack actions, each corresponding to one enemy agent); or do
nothing. If agent A attacks agent B, then B’s health point will be reduced by 1, but only if B is inside
the firing range of A (its surrounding 3 ⇥ 3 area). Agents need one time step of cooling down after
an attack, during which they cannot attack. All agents start with 3 health points, and die when their
health reaches 0. A team will win if all agents in the other team die. The simulation ends when one
team wins, or neither of teams win within 40 time steps (a draw).

The model controls one team during training, and the other team consist of bots that follow a hard-
coded policy. The bot policy is to attack the nearest enemy agent if it is within its firing range. If not,
it approaches the nearest visible enemy agent within visual range. An agent is visible to all bots, if it
is inside the visual range of any individual bot. This shared vision gives an advantage to the bot team.
When input to a model, each agent is represented by a set of one-hot binary vectors {i, t, l, h, c}
encoding its unique ID, team ID, location, health points and cooldown. A model controlling an agent
also sees other agents in its visual range (3 ⇥ 3 surrounding area). The model gets reward of -1 if the
team loses or draws at the end of the game. In addition, it also get reward of �0.1 times the total
health points of the enemy team, which encourages it to attack enemy bots.

Table 3 shows the win rate of different module choices with various types of communication. Among
different modules, the LSTM achieved the best performance. Continuous communication improved
all module types. With the MLP module, we tried dense and discrete communication types but they
degraded performance relative to no communication. We also explored several variations of the
task: varying the number of agents in each team by setting m = 3, 10, and increasing visual range
of agents to 5 ⇥ 5 area. The result on those tasks are shown on the right side of Table 3. Using
continuous communication (CommNN model) consistently improves the win rate, even with the
greater environment observability of the 5⇥5 vision case.
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their meaning (see text for details). Right: First two principal components of hidden state vectors h
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carry different information.

Vectors belonging to the clusters A, B & C in Fig. 3(left) were consistently emitted when one of the
cars was in a specific location, shown by the colored circles in Fig. 3(middle) (or pair of locations for
cluster C). They also strongly correlated with the other car braking at the locations indicated in red,
which happen to be relevant to avoiding collision.

5.2.3 Combat Task

We simulate a simple battle involving two opposing teams in a 15 ⇥ 15 grid as shown in Fig. 2(right).
Each team consists of m = 5 agents and their initial positions are sampled uniformly in a 5 ⇥ 5

square around the team center, which is picked uniformly in the grid. At each time step, an agent can
perform one of the following actions: move one cell in one of four directions; attack another agent
by specifying its ID j (there are m attack actions, each corresponding to one enemy agent); or do
nothing. If agent A attacks agent B, then B’s health point will be reduced by 1, but only if B is inside
the firing range of A (its surrounding 3 ⇥ 3 area). Agents need one time step of cooling down after
an attack, during which they cannot attack. All agents start with 3 health points, and die when their
health reaches 0. A team will win if all agents in the other team die. The simulation ends when one
team wins, or neither of teams win within 40 time steps (a draw).

The model controls one team during training, and the other team consist of bots that follow a hard-
coded policy. The bot policy is to attack the nearest enemy agent if it is within its firing range. If not,
it approaches the nearest visible enemy agent within visual range. An agent is visible to all bots, if it
is inside the visual range of any individual bot. This shared vision gives an advantage to the bot team.
When input to a model, each agent is represented by a set of one-hot binary vectors {i, t, l, h, c}
encoding its unique ID, team ID, location, health points and cooldown. A model controlling an agent
also sees other agents in its visual range (3 ⇥ 3 surrounding area). The model gets reward of -1 if the
team loses or draws at the end of the game. In addition, it also get reward of �0.1 times the total
health points of the enemy team, which encourages it to attack enemy bots.

Table 3 shows the win rate of different module choices with various types of communication. Among
different modules, the LSTM achieved the best performance. Continuous communication improved
all module types. With the MLP module, we tried dense and discrete communication types but they
degraded performance relative to no communication. We also explored several variations of the
task: varying the number of agents in each team by setting m = 3, 10, and increasing visual range
of agents to 5 ⇥ 5 area. The result on those tasks are shown on the right side of Table 3. Using
continuous communication (CommNN model) consistently improves the win rate, even with the
greater environment observability of the 5⇥5 vision case.
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How are the agents communicating?

• Vectors from clusters correspond to distinct 
patterns of  behavior:
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Figure 3: Left: First two principal components of communication vectors c̃ from multiple runs on
the traffic junction task Fig. 2(left). While the majority are “silent” (i.e. have a small norm), distinct
clusters are also present. Middle: for three of these clusters, we probe the model to understand
their meaning (see text for details). Right: First two principal components of hidden state vectors h
from the same runs as on the left, with corresponding color coding. Note how many of the “silent”
communication vectors accompany non-zero hidden state vectors. This shows that the two pathways
carry different information.

Vectors belonging to the clusters A, B & C in Fig. 3(left) were consistently emitted when one of the
cars was in a specific location, shown by the colored circles in Fig. 3(middle) (or pair of locations for
cluster C). They also strongly correlated with the other car braking at the locations indicated in red,
which happen to be relevant to avoiding collision.

5.2.3 Combat Task

We simulate a simple battle involving two opposing teams in a 15 ⇥ 15 grid as shown in Fig. 2(right).
Each team consists of m = 5 agents and their initial positions are sampled uniformly in a 5 ⇥ 5

square around the team center, which is picked uniformly in the grid. At each time step, an agent can
perform one of the following actions: move one cell in one of four directions; attack another agent
by specifying its ID j (there are m attack actions, each corresponding to one enemy agent); or do
nothing. If agent A attacks agent B, then B’s health point will be reduced by 1, but only if B is inside
the firing range of A (its surrounding 3 ⇥ 3 area). Agents need one time step of cooling down after
an attack, during which they cannot attack. All agents start with 3 health points, and die when their
health reaches 0. A team will win if all agents in the other team die. The simulation ends when one
team wins, or neither of teams win within 40 time steps (a draw).

The model controls one team during training, and the other team consist of bots that follow a hard-
coded policy. The bot policy is to attack the nearest enemy agent if it is within its firing range. If not,
it approaches the nearest visible enemy agent within visual range. An agent is visible to all bots, if it
is inside the visual range of any individual bot. This shared vision gives an advantage to the bot team.
When input to a model, each agent is represented by a set of one-hot binary vectors {i, t, l, h, c}
encoding its unique ID, team ID, location, health points and cooldown. A model controlling an agent
also sees other agents in its visual range (3 ⇥ 3 surrounding area). The model gets reward of -1 if the
team loses or draws at the end of the game. In addition, it also get reward of �0.1 times the total
health points of the enemy team, which encourages it to attack enemy bots.

Table 3 shows the win rate of different module choices with various types of communication. Among
different modules, the LSTM achieved the best performance. Continuous communication improved
all module types. With the MLP module, we tried dense and discrete communication types but they
degraded performance relative to no communication. We also explored several variations of the
task: varying the number of agents in each team by setting m = 3, 10, and increasing visual range
of agents to 5 ⇥ 5 area. The result on those tasks are shown on the right side of Table 3. Using
continuous communication (CommNN model) consistently improves the win rate, even with the
greater environment observability of the 5⇥5 vision case.

7



Combat game

3 possible  
routes 
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Figure 2: Left: Traffic junction task where agent-controlled cars (colored circles) have to pass the
through the junction without colliding. Middle: A harder version with four connected junctions.
Right: The combat task, where model controlled agents (red circles) fight against enemy bots (blue
circles). In both tasks each agent has limited visibility (orange region), thus is not able to see the
location of all other agents.

Communication Modules
type MLP RNN LSTM
None 20.6± 14.1 19.5± 4.5 9.4± 5.6
Continuous 2.2± 0.6 7.6± 1.4 1.6± 1.0
Dense 12.5± 4.4 - -
Discrete 20.2± 11.2 - -

Communication Other game versions
type Easy (MLP) Hard (RNN)
None 15.8± 12.5 26.9± 6.0
Continuous 0.3± 0.1 22.5± 6.1
Cont. local - 21.1± 3.4
Discrete 1.1± 2.4 - 1%	

10%	

100%	

1x1	 3x3	 5x5	 7x7	

Fa
ilu
re
	ra

te
	

Vision	range	

None	
Discrete	
Con:nuous	

Table 2: Traffic junction task. Left: failure rates (%) for different types of communication and module func-
tion f(.). Continuous consistently improves performance, over the dense baseline and no communication.
Middle: Game variants. In the easy case, discrete communication does help, but still less than continuous.
On the hard version, local communication (see Section 3.2) does at least as well as broadcasting to all
agents. Right: As visibility in the environment descreases, the importance of communication grows.

where Ct is the number of collisions occurring at time t, and N t is number of cars present. The
simulation is terminated after 40 steps and is classified as a failure if one or more more collisions
have occurred. Details of the input representation, training and other game variations can be found in
Appendix A.

In Table 2, we show the probability of failure of a variety of different module/communication
method pairs. Continuous communication between cars significantly reduces the failure rate for
all module types. Discrete communication did not give any benefit, except for the easy game. We
also tried a dense communication baseline by allowing the matrix T to be arbitrary, resulting in a
single large fully-connected network controlling all agents. However, this did not work as well as
continuous communication (a video showing this model before and after training can be found at
https://youtu.be/onK98y-UNHQ). We also explores how partial visibility within the environment
effects the advantage given by communication. As the vision range of each agent decreases, the
advantage of communication increases. Impressively, with zero visibility (the cars are driving blind)
the continuous communication model is still able to succeed 90% of the time.

5.2.2 Analysis of Communication
We now attempt to understand what the agents communicate when performing the junction task.
We start by recording the hidden state hi

j

of each agent and the corresponding communication
vectors c̃i+1

j

= Ci+1hi

j

(the contribution agent j at step i + 1 makes to the hidden state of other
agents). Fig. 3(left) and Fig. 3(right) show the 2D PCA projections of the communication and hidden
state vectors respectively. These plots show a diverse range of hidden states but far more clustered
communication vectors, many of which are close to zero. This suggests that while the hidden state
carries information, the agent often prefers not to communicate it to the others unless necessary. This
is a possible consequence of the broadcast channel: if everyone talks at the same time, no-one can
understand. See Appendix B for norm of communication vectors and brake locations.

To better understand the meaning behind the communication vectors, we ran the simulation with
only two cars and recorded their communication vectors and locations whenever one of them braked.

6



Experiment: Combat Game
• 5 agents vs 5 enemies in 15x15 map
• Health=3, Shot range=1, power=1, vision=1
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Figure 3: Left: First two principal components of communication vectors c̃ from multiple runs on
the traffic junction task Fig. 2(left). While the majority are “silent” (i.e. have a small norm), distinct
clusters are also present. Middle: for three of these clusters, we probe the model to understand
their meaning (see text for details). Right: First two principal components of hidden state vectors h
from the same runs as on the left, with corresponding color coding. Note how many of the “silent”
communication vectors accompany non-zero hidden state vectors. This shows that the two pathways
carry different information.

To better understand the meaning behind the communication vectors, we ran the simulation with
only two cars and recorded their communication vectors and locations whenever one of them braked.
Vectors belonging to the clusters A, B & C in Fig. 3(left) were consistently emitted when one of the
cars was in a specific location, shown by the colored circles in Fig. 3(middle) (or pair of locations for
cluster C). They also strongly correlated with the other car braking at the locations indicated in red,
which happen to be relevant to avoiding collision.

4.3.3 Combat Task
We simulate a simple battle involving two opposing teams in a 15⇥15 grid as shown in Fig. 2(middle).
Each team consists of m = 5 agents and their initial positions are sampled uniformly in a 5 ⇥ 5
square around the team center, which is picked uniformly in the grid. At each time step, an agent can
perform one of the following actions: move one cell in one of four directions; attack another agent
by specifying its ID j (there are m attack actions, each corresponding to one enemy agent); or do
nothing. If agent A attacks agent B, then B’s health point will be reduced by 1, but only if B is inside
the firing range of A (its surrounding 3 ⇥ 3 area). Agents need one time step of cooling down after
an attack, during which they cannot attack. All agents start with 3 health points, and die when their
health reaches 0. A team will win if all agents in the other team die. The simulation ends when one
team wins, or neither of teams win within 40 time steps (a draw).

The model controls one team during training, and the other team consist of bots that follow a hard-
coded policy. The bot policy is to attack the nearest enemy agent if it is within its firing range. If not,
it approaches the nearest visible enemy agent within visual range. An agent is visible to all bots if it
is inside the visual range of any individual bot. This shared vision gives an advantage to the bot team.
When input to a model, each agent is represented by a set of one-hot binary vectors {i, t, l, h, c}
encoding its unique ID, team ID, location, health points and cooldown. A model controlling an agent
also sees other agents in its visual range (3 ⇥ 3 surrounding area). The model gets reward of -1 if the
team loses or draws at the end of the game. In addition, it also get reward of �0.1 times the total
health points of the enemy team, which encourages it to attack enemy bots.

Module f() type
Model � MLP RNN LSTM
Independent 34.2± 1.3 37.3± 4.6 44.3± 0.4
Fully-connected 17.7± 7.1 2.9± 1.8 19.6± 4.2
Discrete comm. 29.1± 6.7 33.4± 9.4 46.4± 0.7

CommNet 44.5± 13.4 44.4± 11.9 49.5± 12.6

Other game variations (MLP)
Model � m = 3 m = 10 5 ⇥ 5 vision
Independent 29.2± 5.9 30.5± 8.7 60.5± 2.1
CommNet 51.0± 14.1 45.4± 12.4 73.0± 0.7

Table 3: Win rates (%) on the combat task for different communication approaches and module
choices. Continuous consistently outperforms the other approaches. The fully-connected baseline
does worse than the independent model without communication. On the right we explore the
effect of varying the number of agents m and agent visibility. Even with 10 agents on each team,
communication clearly helps.
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Figure 3: Left: First two principal components of communication vectors c̃ from multiple runs on
the traffic junction task Fig. 2(left). While the majority are “silent” (i.e. have a small norm), distinct
clusters are also present. Middle: for three of these clusters, we probe the model to understand
their meaning (see text for details). Right: First two principal components of hidden state vectors h
from the same runs as on the left, with corresponding color coding. Note how many of the “silent”
communication vectors accompany non-zero hidden state vectors. This shows that the two pathways
carry different information.

To better understand the meaning behind the communication vectors, we ran the simulation with
only two cars and recorded their communication vectors and locations whenever one of them braked.
Vectors belonging to the clusters A, B & C in Fig. 3(left) were consistently emitted when one of the
cars was in a specific location, shown by the colored circles in Fig. 3(middle) (or pair of locations for
cluster C). They also strongly correlated with the other car braking at the locations indicated in red,
which happen to be relevant to avoiding collision.

4.3.3 Combat Task
We simulate a simple battle involving two opposing teams in a 15⇥15 grid as shown in Fig. 2(middle).
Each team consists of m = 5 agents and their initial positions are sampled uniformly in a 5 ⇥ 5
square around the team center, which is picked uniformly in the grid. At each time step, an agent can
perform one of the following actions: move one cell in one of four directions; attack another agent
by specifying its ID j (there are m attack actions, each corresponding to one enemy agent); or do
nothing. If agent A attacks agent B, then B’s health point will be reduced by 1, but only if B is inside
the firing range of A (its surrounding 3 ⇥ 3 area). Agents need one time step of cooling down after
an attack, during which they cannot attack. All agents start with 3 health points, and die when their
health reaches 0. A team will win if all agents in the other team die. The simulation ends when one
team wins, or neither of teams win within 40 time steps (a draw).

The model controls one team during training, and the other team consist of bots that follow a hard-
coded policy. The bot policy is to attack the nearest enemy agent if it is within its firing range. If not,
it approaches the nearest visible enemy agent within visual range. An agent is visible to all bots if it
is inside the visual range of any individual bot. This shared vision gives an advantage to the bot team.
When input to a model, each agent is represented by a set of one-hot binary vectors {i, t, l, h, c}
encoding its unique ID, team ID, location, health points and cooldown. A model controlling an agent
also sees other agents in its visual range (3 ⇥ 3 surrounding area). The model gets reward of -1 if the
team loses or draws at the end of the game. In addition, it also get reward of �0.1 times the total
health points of the enemy team, which encourages it to attack enemy bots.

Module f() type
Model � MLP RNN LSTM
Independent 34.2± 1.3 37.3± 4.6 44.3± 0.4
Fully-connected 17.7± 7.1 2.9± 1.8 19.6± 4.2
Discrete comm. 29.1± 6.7 33.4± 9.4 46.4± 0.7

CommNet 44.5± 13.4 44.4± 11.9 49.5± 12.6

Other game variations (MLP)
Model � m = 3 m = 10 5 ⇥ 5 vision
Independent 29.2± 5.9 30.5± 8.7 60.5± 2.1
CommNet 51.0± 14.1 45.4± 12.4 73.0± 0.7

Table 3: Win rates (%) on the combat task for different communication approaches and module
choices. Continuous consistently outperforms the other approaches. The fully-connected baseline
does worse than the independent model without communication. On the right we explore the
effect of varying the number of agents m and agent visibility. Even with 10 agents on each team,
communication clearly helps.
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Related Work (I)

• Concurrent work: 
Learning to Communicate 
with Deep Multi-Agent 
Reinforcement Learning, 
Jakob N. Foerster, Yannis M. 
Assael, Nando de 
Freitas, Shimon Whiteson, 
NIPS 2016
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Figure 4: Switch: (a-b) Performance of DIAL and RIAL, with and without ( -NS) parameter sharing,
and NoComm-baseline, for n = 3 and n = 4 agents. (c) The decision tree extracted for n = 3 to
interpret the communication protocol discovered by DIAL.

Complexity. The switch riddle poses significant protocol learning challenges. At any time-step t,
there are |o|t possible observation histories for a given agent, with |o| = 3: the agent either is not
in the interrogation room or receives one of two messages when he is. For each of these histories,
an agent can chose between 4 = |U ||M | different options, so at time-step t, the single-agent policy
space is (|U ||M |)|o|

t

= 4

3t . The product of all policies for all time-steps defines the total policy
space for an agent:

Q
4

3t
= 4

(3T+1�3)/2, where T is the final time-step. The size of the multi-agent
policy space grows exponentially in n, the number of agents: 4n(3

T+1�3)/2. We consider a setting
where T is proportional to the number of agents, so the total policy space is 4n3

O(n)

. For n = 4, the
size is 488572. Our approach using DIAL is to model the switch as a continuous message, which is
binarised during decentralised execution.

Experimental results. Figure 4(a) shows our results for n = 3 agents. All four methods learn an
optimal policy in 5k episodes, substantially outperforming the NoComm baseline. DIAL with param-
eter sharing reaches optimal performance substantially faster than RIAL. Furthermore, parameter
sharing speeds both methods. Figure 4(b) shows results for n = 4 agents. DIAL with parameter
sharing again outperforms all other methods. In this setting, RIAL without parameter sharing was
unable to beat the NoComm baseline. These results illustrate how difficult it is for agents to learn the
same protocol independently. Hence, parameter sharing can be crucial for learning to communicate.
DIAL-NS performs similarly to RIAL, indicating that the gradient provides a richer and more robust
source of information.

We also analysed the communication protocol discovered by DIAL for n = 3 by sampling 1K
episodes, for which Figure 4(c) shows a decision tree corresponding to an optimal strategy. When a
prisoner visits the interrogation room after day two, there are only two options: either one or two
prisoners may have visited the room before. If three prisoners had been, the third prisoner would have
finished the game. The other options can be encoded via the “On” and “Off” position respectively.

6.3 MNIST Games

In this section, we consider two tasks based on the well known MNIST digit classification dataset [26].
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Figure 5: MNIST games architectures.

Colour-Digit MNIST is a two-player
game in which each agent observes the
pixel values of a random MNIST digit in
red or green of size 2 ⇥ 28 ⇥ 28, while
the colour label, ca 2 0, 1, and digit value,
da 2 0..9, are hidden. For each agent, re-
ward consists of two components that are
antisymmetric in the action, colour, and
parity (odd, even) of the digits. Only one
bit of information can be sent, so agents
must agree to encode/decode either colour
or parity, with parity yielding greater rewards. The game has two steps; in the first step, both
agents send a 1-bit message, in the second step they select a binary action ua

2 . The reward
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• Multi-agent Reinforcement Learning
– Lots of  papers on collaborative task solving
– But usually communication protocol fixed



Related Work (II) 

• Graph Neural Networks
– Gori et al., IJCNN 2005; 
– Scarselli et al., IEEE Trans. Neural Networks, 2009

• Gated Graph Neural Networks
– Li, Zemel, Brockschmidt & Tarlow, ICLR 2016.

Published as a conference paper at ICLR 2016
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Figure 1: (a) Example graph. Color denotes edge types. (b) Unrolled one timestep. (c) Parameter
tying and sparsity in recurrent matrix. Letters denote edge types with B

0 corresponding to the reverse
edge of type B. B and B

0 denote distinct parameters.

The matrix A 2 RD|V|⇥2D|V| determines how nodes in the graph communicate with each other. The
sparsity structure and parameter tying in A is illustrated in Fig. 1. The sparsity structure corresponds
to the edges of the graph, and the parameters in each submatrix are determined by the edge type
and direction. A

v: 2 RD⇥2D|V| is the submatrix of A containing the rows corresponding to node
v. Eq. 1 is the initialization step, which copies node annotations into the first components of the
hidden state and pads the rest with zeros. Eq. 2 is the step that passes information between different
nodes of the graph via incoming and outgoing edges with parameters dependent on the edge type
and direction. a(t)

v

2 R2D contains activations from edges in both directions. The remaining are
GRU-like updates that incorporate information from the other nodes and from the previous timestep
to update each node’s hidden state. z and r are the update and reset gates, �(x) = 1/(1+ e

�x) is the
logistic sigmoid function, and � is element-wise multiplication. We initially experimented with a
vanilla recurrent neural network-style update, but in preliminary experiments we found this GRU-like
propagation step to be more effective.

3.3 OUTPUT MODELS

There are several types of one-step outputs that we would like to produce in different situations. First,
GG-NNs support node selection tasks by making o

v

= g(h(T )
v

,x

v

) for each node v 2 V output node
scores and applying a softmax over node scores. Second, for graph-level outputs, we define a graph
level representation vector as

hG = tanh

 
X

v2V
�

⇣
i(h(T )

v

,x

v

)
⌘
� tanh

⇣
j(h(T )

v

,x

v

)
⌘!

, (7)

where �(i(h(T )
v

,x

v

)) acts as a soft attention mechanism that decides which nodes are relevant to the
current graph-level task. i and j are neural networks that take the concatenation of h(T )

v

and x

v

as
input and outputs real-valued vectors. The tanh functions can also be replaced with the identity.

4 GATED GRAPH SEQUENCE NEURAL NETWORKS

Here we describe Gated Graph Sequence Neural Networks (GGS-NNs), in which several GG-NNs
operate in sequence to produce an output sequence o

(1)
. . .o

(K).

For the k

th output step, we denote the matrix of node annotations as X (k) = [x(k)
1 ; . . . ;x(k)

|V|]
> 2

R|V|⇥LV . We use two GG-NNs F (k)
o

and F (k)
X : F (k)

o

for predicting o

(k) from X (k), and F (k)
X for

predicting X (k+1) from X (k). X (k+1) can be seen as the states carried over from step k to k + 1.
Both F (k)

o

and F (k)
X contain a propagation model and an output model. In the propagation models,

we denote the matrix of node vectors at the t

th propagation step of the k

th output step as H(k,t) =

[h(k,t)
1 ; . . . ;h(k,t)

|V| ]> 2 R|V|⇥D. As before, in step k, we setH(k,1) by 0-extending X (k) per node. An

overview of the model is shown in Fig. 2. Alternatively, F (k)
o

and F (k)
X can share a single propagation

model, and just have separate output models. This simpler variant is faster to train and evaluate, and
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CommNet Summary

• Distributed NN model 
– Appropriate for tasks where input (and output) is set

• Models learn sparse communication protocol
• Can combine with RL for MARL problems

• Learning Multiagent Communication with 
Backpropagation, Sainbayar Sukhbaatar, Arthur 
Szlam, Rob Fergus, NIPS 2016

• Code: https://github.com/facebookresearch/CommNet



Learning Abstraction with NN
(ongoing work)

• Abstraction is vital in cognitive tasks
• Abstraction of  observations
– higher layers of  ConvNets, hidden state of  RNNs

• Abstraction of  actions in reinforcement learning 

• Going to work = thousands of  steps/actions 
= get to station à take a train à walk to office
– Deep RL models lack abstraction/hierarchy
– Possible solution: recursive policy



Task-conditional RL

• Usual RL settings have fixed task
– Policy(Observation) à action

• Key idea: Generalize so agents also perceive task
– Policy(Observation, Task) à action

• Different tasks for different episodes
• Tasks can be represented by embedding vector



Recursive Policy
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Execution of  recursive policy

Recursive policy for RL

Sainaa

November 14, 2016

1 Notations

• Task Ids: g 2 G = {1, ...,K}

• Environment actions: a 2 A = {1, ...,M}

• Extended actions: a0 2 A0 = A \G \ {<term>}

• Policy: ⇡ : s⇥ g ! a0

• Task hardness: h(g) 2 R

• Atomic tasks: g that can’t be split (e.g. lowest level sub-tasks)

2 Training

The policy can output task ID in addition to actions. If it outputs an action, we simply send it to

environment and move on to next time step. But if it outputs a task ID, we recursively call ⇡ with

the new task ID and wait for its return (when the policy outputs a special action <term>). To

prevent infinite recursion, require the task to be easier h(g0) < h(g). During training, recursively

called policies will be considered fixed, so only the outer loop actions will be trained. Also, penalize

the number of outer loop actions, so it would try to use sub-goals as much as possible.

function Run(s, g, t)
while t < T

max

do

a0  ⇡(s, g)
if a0 2 A then

s Environment.Act(a0)
t t+ 1

else if a0 = <term> then

return s, t
else

g0  a0

if h(g’) < h(g) then

s, t Run(s, g0, t)
end if

end if

end while

end function

3 Fine-tuning of sub-tasks

In some cases, fine-tuning of ⇡(g0) might be become necessary even when it is recursively called.

For example, the environment might be slightly different for g than of g0. Then we need to fine-tune

⇡(g0) so it work properly on this novel environment while it is being called recursively. Note, ⇡(g0)
still has to do the same task when it is called directly, so fine-tuning shouldn’t affect this.

1

Recursive policy for RL

Sainaa

December 9, 2016

1 ToDo

1. add tasks like “go to table 1”

2. command line options for games

3. multiple words task description

4. include level 2 tasks into action list

5. curriculum without using hardness label

6. put craft instruction to memory

2 Notations

• Task Ids: g 2 G = {1, ...,K}

• Environment actions: a 2 A = {1, ...,M}

• Extended actions: a0 2 A0 = A \G \ {<term>}

• Policy: ⇡ : s⇥ g ! a0

• Task hardness: h(g) 2 R

• Atomic tasks: g that can’t be split (e.g. lowest level sub-tasks)

3 Training

The policy can output task ID in addition to actions. If it outputs an action, we simply send it to

environment and move on to next time step. But if it outputs a task ID, we recursively call ⇡ with

the new task ID and wait for its return (when the policy outputs a special action <term>). To

prevent infinite recursion, require the task to be easier h(g0) < h(g). During training, recursively

called policies will be considered fixed, so only the outer loop actions will be trained. Also, penalize

the number of outer loop actions, so it would try to use sub-goals as much as possible.

function Run(s, g, t)
while t < T

max

do

a0  ⇡(s, g)
if a0 2 A then

s Environment.Act(a0)
t t+ 1

else if a0 = <term> then

return s, t
else

g0  a0

s, t Run(s, g0, t)
end if

end while

end function

1

• During training, give small internal reward 
for using recursion

• Size of  reward slowly increases with epoch



Related Work
• Options framework [Sutton’99], HAMs [Parr’98], MAXQ

[Dietterich’00]

• P. Bacon, J. Harb, D. Precup. “The Option-Critic Architecture”, 
2016.

• J. Oh, S. Singh, H. Lee, P. Kolhi. “Communicating Hierarchical 
Neural Controllers for Learning Zero-shot Task Generalization”, 
ICLR Submission, 2016

• J. Andreas, D. Klein, S. Levine. “Modular Multitask Reinforcement 
Learning with Policy Sketches”, ICLR Submission, 2016 (borrow 
their tasks)

• J. Cai, R. Shin, D. Song. “Making Neural Programming 
Architectures Generalize via Recursion”, ICLR Submission, 2016



Representation of  tasks

• Fixed number of  tasks à use their unique IDs
– 1=“go to door”, 2=“lock door”, 3=“close door”

• Future: use natural language to describe a task
– Task = list of  words
– Ex) “close door”, “close all doors”, “find open 

door”
– Generalization to unseen tasks?



Random Difficulty During Training :

stand grasp X
walk to X

bring X put X on Y

make coffee

Training tasks



Random Difficulty During Training :

Learns easy tasks 
without recursion

time

Learn to solve hard tasks by 
recursively calling easy tasks

stand
grasp X

walk to X
bring X

put X on Y
make coffee

Training tasks



Preliminary results

Tasks are randomly sampled from:
1. Grab wood
2. Grab iron
3. Grab rock
4. Make axe (wood, iron à worktable)
5. Make sword (rock, iron à factory)
6. Make hammer (wood, rock à toolshed)
7. Make bridge(wood, iron, rock à plant)

Model doesn’t know which ones are easy
No specification of  sub-tasks in Make tasks

Under review as a conference paper at ICLR 2017

MODULAR MULTITASK REINFORCEMENT
LEARNING WITH POLICY SKETCHES

Jacob Andreas, Dan Klein, and Sergey Levine

Computer Science Division
University of California, Berkeley
{jda,klein,svlevine}@eecs.berkeley.edu

ABSTRACT

We describe a framework for multitask deep reinforcement learning guided by
policy sketches. Sketches annotate each task with a sequence of named subtasks,
providing high-level structural relationships among tasks, but not providing the
detailed guidance required by previous work on learning policy abstractions for
RL (e.g. intermediate rewards, subtask completion signals, or intrinsic motiva-
tions). Our approach associates every subtask with its own modular subpolicy,
and jointly optimizes over full task-specific policies by tying parameters across
shared subpolicies. This optimization is accomplished via a simple decoupled
actor–critic training objective that facilitates learning common behaviors from
dissimilar reward functions. We evaluate the effectiveness of our approach on a
maze navigation game and a 2-D Minecraft-inspired crafting game. Both games
feature extremely sparse rewards that can be obtained only after completing a
number of high-level subgoals (e.g. escaping from a sequence of locked rooms or
collecting and combining various ingredients in the proper order). Experiments
illustrate two main advantages of our approach. First, we outperform standard
baselines that learn task-specific or shared monolithic policies. Second, our
method naturally induces a library of primitive behaviors that can be recombined
to rapidly acquire policies for new tasks.

1 INTRODUCTION

π1

π2

π3

π1

b1: get wood

τ1: make planks

b2: use workbench

Π1

b1: get wood

τ2: make sticks

b3: use toolshed

π1

π3

Π2

π1

π2

K1 K2

Figure 1: Composing policies from subpolicies. Here
we have simplified versions of two tasks (make planks

and make sticks, each associated with its own policy
(⇧1 and ⇧2 respectively). These policies share an ini-
tial high-level action b1: both require the agent to get

wood before taking it to an appropriate crafting station.
By enforcing that the agent initially follows the same
subpolicy ⇡1 in both tasks, we can learn a reusable rep-
resentation of their shared structure.

This paper describes a framework for learning
composable deep subpolicies in a multitask set-
ting, guided only by abstract policy sketches.
We are interested in problems like the ones
shown in Figure 1, with collections of tasks
that involve sparse rewards and long-term plan-
ning, but which share structure in the form of
common subgoals or reusable high-level ac-
tions. Our work aims to develop models that
can learn efficiently from these sparse rewards
and rapidly adapt to new tasks, by exploiting
this shared structure and translating success on
one task into progress on others. Our approach
ultimately induces a library of high-level ac-
tions directly from symbolic annotations like
the ones marked K1 and K2 in the figure.

This approach builds on a significant body of
research in reinforcement learning that focuses
on hierarchical representations of behavior. In
these approaches, a high-level controller learns
a policy over high-level actions—known var-
iously as options (Sutton et al., 1999), skills

1

[Andreas et al. ’16]



Training Details

• Using MazeBase [Sukhbaatar et al.’16]

• Policy is fully-connected NN with 2 hidden 
layers (50 units/layer)

• Trained with REINFORCE [Williams’92]

• Reward structure:
– Each time step: -0.1
– Complete task: +1
– Use recursion (1 level): +0.02 [ramp; initially zero]



Model learns easy tasks first



Model learns when to use recursion



Comparison with non-recursive model

• Success rates on harder “Make” tasks
• 20 hidden units/layer

No recursion 1-level recursion



Trained Model

+ ! =

+ ! =

+ ! =

+ + ! =

1

Task key: 



Summary

• Simple recursion-based RL approach
• Learns sub-task structure with minimal supervision

Future work:
• More than two levels of  hierarchy
• More complex environment with diverse tasks
• Natural language for task description
• Learn to create a novel sub-task



Experiment: bag to sequence

• Problem: given a set of  words, arrange them in 
right order.

• Separate streams for each words
• After 2 hops, each stream output its location
• Data: Gigaword, 5 words, 2 layer MLP as f

{is, mouse, cat, chasing} à “cat is chasing mouse”

5-gram by KenLM Our model

Error per word 40% 26%



Fine-tuning of  lower policies

policy

policy

observation

task

action

sub-task

gradient

gradient reward

The whole model a stochastic computation graph à All discrete actions 
including internal decisions can be trained with policy gradient. 

Only fine-tune lower policies, and not change its behavior



Initial experiments in grid world

Failure rate on 
visit two goals

Reward
+ recursion reward

No recursion 3.11% 0.213

Recursive 1.02% 0.501

Recursive + fine-tune 0.11% 0.561



Model learns easy tasks first

Not using recursion when task is easy



Communication Structure

• Broadcast channel between all agents
• Each agent receives average of  hidden state 

from all other agents: 
T i =

0

BBBBB@

Hi C̄i C̄i ... C̄i

C̄i Hi C̄i ... C̄i

C̄i C̄i Hi ... C̄i

...
...

...
. . .

...
C̄i C̄i C̄i ... Hi

1
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1 Introduction2

In this work we make two contributions. First, we simplify and extend the graph neural network3

architecture of ??. Second, we show how this architecture can be used to control groups of cooperating4

agents.5

2 Model6

The simplest form of the model consists of multilayer neural networks f i that take as input vectors7

hi and ci and output a vector hi+1. The model takes as input a set of vectors {h0
1, h

0
2, ..., h

0
m

}, and8

computes9

hi+1
j

= f i

(hi

j

, ci

j

)

10

ci+1
j

=

X

j

0 6=j

hi+1
j

0 ;

We set c0
j

= 0 for all j, and i 2 {0, .., K} (we will call K the number of hops in the network).11

If desired, we can take the final hK

j

and output them directly, so that the model outputs a vector12

corresponding to each input vector, or we can feed them into another network to get a single vector or13

scalar output.14

If each f i is a simple linear layer followed by a nonlinearity �:15

hi+1
j

= �(Aihi

j

+ Bici

j

),

then the model can be viewed as a feedforward network with layers16

Hi+1
= �(T iHi

),

where T is written in block form17

T i

=

�

�����

Ai Bi Bi ... Bi

Bi Ai Bi ... Bi

Bi Bi Ai ... Bi

...
...

...
. . .

...
Bi Bi Bi ... Ai

�

�����
.

The key idea is that T is dynamically sized, and the matrix can be dynamically sized because the18

blocks are applied by type, rather than by coordinate.19
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2 Problem Formulation33

We consider the setting where we have M agents, all cooperating to maximize reward R in some34

environment. We make the simplifying assumption that each agent receives R, independent of their35

contribution. In this setting, there is no difference between each agent having its own controller, or36

viewing them as pieces of a larger model controlling all agents. Taking the latter perspective, our37

controller is a large feed-forward neural network that maps inputs for all agents to their actions, each38

agent occupying a subset of units. A specific connectivity structure between layers (a) instantiates the39

broadcast communication channel between agents and (b) propagates the agent state in the manner of40

an RNN.41

Because the agents will receive reward, but not necessarily supervision for each action, reinforcement42

learning is used to maximize expected future reward. We explore two forms of communication within43

the controller: (i) discrete and (ii) continuous. In the former case, communication is an action, and44

will be treated as such by the reinforcement learning. In the continuous case, the signals passed45

between agents are no different than hidden states in a neural network; thus credit assignment for the46

communication can be performed using standard backpropagation (within the outer RL loop).47

We use policy gradient [33] with a state specific baseline for delivering a gradient to the model.48

Denote the states in an episode by s(1), ..., s(T ), and the actions taken at each of those states49

as a(1), ..., a(T ), where T is the length of the episode. The baseline is a scalar function of the50

states b(s, ✓), computed via an extra head on the model producing the action probabilities. Beside51

maximizing the expected reward with policy gradient, the models are also trained to minimize the52

distance between the baseline value and actual reward. Thus, after finishing an episode, we update53

the model parameters ✓ by54

�✓ =

TX

t=1

2

4@ log p(a(t)|s(t), ✓)
@✓

 
TX

i=t

r(i) � b(s(t), ✓)

!
� ↵

@

@✓

 
TX

i=t

r(i) � b(s(t), ✓)

!2
3

5 .

Here r(t) is reward given at time t, and the hyperparameter ↵ is for balancing the reward and the55

baseline objectives, set to 0.03 in all experiments.56

3 Model57

We now describe the model used to compute p(a(t)|s(t), ✓) at a given time t (ommiting the time58

index for brevity). Let s
j

be the jth agent’s view of the state of the environment. The input to the59

controller is the concatenation of all state-views s = {s1, ..., sJ

}, and the controller � is a mapping60

a = �(s), where the output a is a concatenation of discrete actions a = {a1, ..., aJ

} for each agent.61

Note that this single controller � encompasses the individual controllers for each agents, as well as62

the communication between agents.63

One obvious choice for � is a fully-connected multi-layer neural network, which could extract64

features h from s and use them to predict good actions with our RL framework. This model would65

allow agents to communicate with each other and share views of the environment. However, it66

is inflexible with respect to the composition and number of agents it controls; cannot deal well67

with agents joining and leaving the group and even the order of the agents must be fixed. On the68

other hand, if no communication is used then we can write a = {�(s1), ..., �(s
J

)}, where � is a69

per-agent controller applied independently. This communication-free model satisfies the flexibility70

requirements1, but is not able to coordinate their actions.71

3.1 Controller Structure72

We now detail the architecture for � that has the modularity of the communication-free model but73

still allows communication. � is built from modules f i, which take the form of multilayer neural74

networks. Here i 2 {0, .., K}, where K is the number of communication layers in the network.75

Each f i takes two input vectors for each agent j: the hidden state hi

j

and the communication ci

j

,76

and outputs a vector hi+1
j

. The main body of the model then takes as input the concatenated vectors77

1Assuming sj includes the identity of agent j.
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In the case that f i is a single linear layer followed by a nonlinearity �, we have: hi+1
j

= �(Hihi

j

+80

Cici

j

) and the model can be viewed as a feedforward network with layers hi+1
= �(T ihi

) where hi81
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j
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We set c0
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= 0 for all j, and i 2 {0, .., K} (we will call K the number of hops in the network).11

If desired, we can take the final hK
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and output them directly, so that the model outputs a vector12

corresponding to each input vector, or we can feed them into another network to get a single vector or13
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The key idea is that T is dynamically sized, and the matrix can be dynamically sized because the18

blocks are applied by type, rather than by coordinate.19
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the controller: (i) discrete and (ii) continuous. In the former case, communication is an action, and44

will be treated as such by the reinforcement learning. In the continuous case, the signals passed45

between agents are no different than hidden states in a neural network; thus credit assignment for the46

communication can be performed using standard backpropagation (within the outer RL loop).47

We use policy gradient [33] with a state specific baseline for delivering a gradient to the model.48

Denote the states in an episode by s(1), ..., s(T ), and the actions taken at each of those states49

as a(1), ..., a(T ), where T is the length of the episode. The baseline is a scalar function of the50

states b(s, ✓), computed via an extra head on the model producing the action probabilities. Beside51

maximizing the expected reward with policy gradient, the models are also trained to minimize the52

distance between the baseline value and actual reward. Thus, after finishing an episode, we update53

the model parameters ✓ by54
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Here r(t) is reward given at time t, and the hyperparameter ↵ is for balancing the reward and the55

baseline objectives, set to 0.03 in all experiments.56

3 Model57

We now describe the model used to compute p(a(t)|s(t), ✓) at a given time t (ommiting the time58

index for brevity). Let s
j

be the jth agent’s view of the state of the environment. The input to the59

controller is the concatenation of all state-views s = {s1, ..., sJ

}, and the controller � is a mapping60

a = �(s), where the output a is a concatenation of discrete actions a = {a1, ..., aJ

} for each agent.61

Note that this single controller � encompasses the individual controllers for each agents, as well as62

the communication between agents.63

One obvious choice for � is a fully-connected multi-layer neural network, which could extract64

features h from s and use them to predict good actions with our RL framework. This model would65

allow agents to communicate with each other and share views of the environment. However, it66

is inflexible with respect to the composition and number of agents it controls; cannot deal well67

with agents joining and leaving the group and even the order of the agents must be fixed. On the68

other hand, if no communication is used then we can write a = {�(s1), ..., �(s
J

)}, where � is a69

per-agent controller applied independently. This communication-free model satisfies the flexibility70

requirements1, but is not able to coordinate their actions.71

3.1 Controller Structure72

We now detail the architecture for � that has the modularity of the communication-free model but73

still allows communication. � is built from modules f i, which take the form of multilayer neural74

networks. Here i 2 {0, .., K}, where K is the number of communication layers in the network.75

Each f i takes two input vectors for each agent j: the hidden state hi

j

and the communication ci

j

,76

and outputs a vector hi+1
j

. The main body of the model then takes as input the concatenated vectors77

1Assuming sj includes the identity of agent j.
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The key idea is that T is dynamically sized. First, the number of agents may vary. This motivates83

the the normalizing factor J � 1 in equation (2), which resacles the communication vector by the84

number of communicating agents. Second, the blocks are applied based on category, rather than by85

coordinate. In this simple form of the model “category” refers to either “self” or “teammate”; but as86

we will see below, the communication architecture can be more complicated than “broadcast to all”,87

and so may require more categories. Note also that T i is permutation invariant, thus the order of the88

agents does not matter.89

At the first layer of the model an encoder function h0
j

= p(s
j

) is used. This takes as input state-view90

s
j

and outputs feature vector h0
j

(in Rd0 for some d0). The form of the encoder is problem dependent,91

but for most of our tasks they consist of a lookup-table embedding (or bags of vectors thereof). Unless92

otherwise noted, c0
j

= 0 for all j.93

At the output of the model, a decoder function q(hK

j

) is used to output a distribution over the space of94

actions. q(.) takes the form of a single layer network, followed by a softmax. To produce a discrete95

action, we sample from the this distribution.96

Thus the entire model, which we call a Communication Neural Net (CommNN), (i) takes the state-97

view of all agents s, passes it through the encoder h0
= p(s), (ii) iterates h and c in equations (1)98

and (2) to obain hK , (iii) samples actions a for all agents, according to q(hK

).99

3.2 Model Extensions100

Local Connectivity: An alternative to the broadcast framework described above is to allow agents101

to communicate to others within a certain range. Let N(j) be the set of agents present within102

communication range of agent j. Then (2) becomes:103
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2 Problem Formulation33

We consider the setting where we have M agents, all cooperating to maximize reward R in some34

environment. We make the simplifying assumption that each agent receives R, independent of their35

contribution. In this setting, there is no difference between each agent having its own controller, or36

viewing them as pieces of a larger model controlling all agents. Taking the latter perspective, our37

controller is a large feed-forward neural network that maps inputs for all agents to their actions, each38

agent occupying a subset of units. A specific connectivity structure between layers (a) instantiates the39

broadcast communication channel between agents and (b) propagates the agent state in the manner of40

an RNN.41

Because the agents will receive reward, but not necessarily supervision for each action, reinforcement42

learning is used to maximize expected future reward. We explore two forms of communication within43

the controller: (i) discrete and (ii) continuous. In the former case, communication is an action, and44

will be treated as such by the reinforcement learning. In the continuous case, the signals passed45

between agents are no different than hidden states in a neural network; thus credit assignment for the46

communication can be performed using standard backpropagation (within the outer RL loop).47

We use policy gradient [33] with a state specific baseline for delivering a gradient to the model.48

Denote the states in an episode by s(1), ..., s(T ), and the actions taken at each of those states49

as a(1), ..., a(T ), where T is the length of the episode. The baseline is a scalar function of the50

states b(s, ✓), computed via an extra head on the model producing the action probabilities. Beside51

maximizing the expected reward with policy gradient, the models are also trained to minimize the52

distance between the baseline value and actual reward. Thus, after finishing an episode, we update53

the model parameters ✓ by54
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Here r(t) is reward given at time t, and the hyperparameter ↵ is for balancing the reward and the55

baseline objectives, set to 0.03 in all experiments.56

3 Model57

We now describe the model used to compute p(a(t)|s(t), ✓) at a given time t (ommiting the time58

index for brevity). Let s
j

be the jth agent’s view of the state of the environment. The input to the59

controller is the concatenation of all state-views s = {s1, ..., sJ

}, and the controller � is a mapping60

a = �(s), where the output a is a concatenation of discrete actions a = {a1, ..., aJ

} for each agent.61

Note that this single controller � encompasses the individual controllers for each agents, as well as62

the communication between agents.63

One obvious choice for � is a fully-connected multi-layer neural network, which could extract64

features h from s and use them to predict good actions with our RL framework. This model would65

allow agents to communicate with each other and share views of the environment. However, it66

is inflexible with respect to the composition and number of agents it controls; cannot deal well67

with agents joining and leaving the group and even the order of the agents must be fixed. On the68

other hand, if no communication is used then we can write a = {�(s1), ..., �(s
J

)}, where � is a69

per-agent controller applied independently. This communication-free model satisfies the flexibility70

requirements1, but is not able to coordinate their actions.71

3.1 Controller Structure72

We now detail the architecture for � that has the modularity of the communication-free model but73

still allows communication. � is built from modules f i, which take the form of multilayer neural74

networks. Here i 2 {0, .., K}, where K is the number of communication layers in the network.75

Each f i takes two input vectors for each agent j: the hidden state hi

j

and the communication ci

j

,76

and outputs a vector hi+1
j

. The main body of the model then takes as input the concatenated vectors77

1Assuming sj includes the identity of agent j.
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The key idea is that T is dynamically sized. First, the number of agents may vary. This motivates83

the the normalizing factor J � 1 in equation (2), which resacles the communication vector by the84

number of communicating agents. Second, the blocks are applied based on category, rather than by85

coordinate. In this simple form of the model “category” refers to either “self” or “teammate”; but as86

we will see below, the communication architecture can be more complicated than “broadcast to all”,87

and so may require more categories. Note also that T i is permutation invariant, thus the order of the88

agents does not matter.89

At the first layer of the model an encoder function h0
j

= p(s
j

) is used. This takes as input state-view90

s
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and outputs feature vector h0
j

(in Rd0 for some d0). The form of the encoder is problem dependent,91

but for most of our tasks they consist of a lookup-table embedding (or bags of vectors thereof). Unless92

otherwise noted, c0
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= 0 for all j.93

At the output of the model, a decoder function q(hK

j

) is used to output a distribution over the space of94

actions. q(.) takes the form of a single layer network, followed by a softmax. To produce a discrete95

action, we sample from the this distribution.96

Thus the entire model, which we call a Communication Neural Net (CommNN), (i) takes the state-97

view of all agents s, passes it through the encoder h0
= p(s), (ii) iterates h and c in equations (1)98

and (2) to obain hK , (iii) samples actions a for all agents, according to q(hK

).99

3.2 Model Extensions100

Local Connectivity: An alternative to the broadcast framework described above is to allow agents101

to communicate to others within a certain range. Let N(j) be the set of agents present within102
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Figure 1: An overview of our communication model. Left: view of module f i for a single agent j.
Note that the parameters are shared across all agents. Middle: a single communication step, where
each agents modules propagate their internal state h, as well as broadcasting a communication vector
c on a common channel (shown in red). Right: full model, showing input states s for each agent, two
communication steps and the output actions for each agent.

A key point is that T is dynamically sized since the number of agents may vary. This motivates the
the normalizing factor J � 1 in equation (3), which rescales the communication vector by the number
of communicating agents. Note also that T i is permutation invariant, thus the order of the agents
does not matter.

At the first layer of the model an encoder function h0
j

= r(s
j

) is used. This takes as input state-view
s

j

and outputs feature vector h0
j

(in Rd0 for some d0). The form of the encoder is problem dependent,
but for most of our tasks it is a single layer neural network. Unless otherwise noted, c0

j

= 0 for all j.
At the output of the model, a decoder function q(hK

j

) is used to output a distribution over the space of
actions. q(.) takes the form of a single layer network, followed by a softmax. To produce a discrete
action, we sample from the this distribution: a

j

⇠ q(hK

j

).

Thus the entire model (shown in Fig. 1), which we call a Communication Neural Net (CommNN), (i)
takes the state-view of all agents s, passes it through the encoder h0

= r(s), (ii) iterates h and c in
equations (2) and (3) to obtain hK , (iii) samples actions a for all agents, according to q(hK

). We refer
to this type communication as continuous type because communication is based on continuous-valued
vectors.

3.2 Model Extensions

Local Connectivity: An alternative to the broadcast framework described above is to allow agents
to communicate to others within a certain range. Let N(j) be the set of agents present within
communication range of agent j. Then (3) becomes:

ci+1
j

=

1

|N(j)|
X

j

02N(j)

hi+1
j

0 . (4)

As the agents move, enter and exit and the environment, N(j) will change over time. In this setting,
our model has a natural interpretation as a dynamic graph, with N(j) being the set of vertices
connected to vertex j at the current time. The edges within the graph represent the communication
channel between agents, with (4) being equivalent to belief propagation [22]. Furthermore, the use of
multi-layer nets at each vertex makes our model similar to an instantiation of the GGSNN work of Li
et al. [14].

Temporal Recurrence: We also explore having the network be a recurrent neural network (RNN).
This is achieved by simply replacing the communication step i in Eqn. (2) and (3) by a time step t,

3
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Figure 2: Left: Traffic junction task where agent-controlled cars (colored circles) have to pass the
through the junction without colliding. Middle: A harder version with four connected junctions.
Right: The combat task, where model controlled agents (red circles) fight against enemy bots (blue
circles). In both tasks each agent has limited visibility (orange region), thus is not able to see the
location of all other agents.

Communication Modules
type MLP RNN LSTM
None 20.6± 14.1 19.5± 4.5 9.4± 5.6
Continuous 2.2± 0.6 7.6± 1.4 1.6± 1.0
Dense 12.5± 4.4 - -
Discrete 20.2± 11.2 - -

Communication Other game versions
type Easy (MLP) Hard (RNN)
None 15.8± 12.5 26.9± 6.0
Continuous 0.3± 0.1 22.5± 6.1
Cont. local - 21.1± 3.4
Discrete 1.1± 2.4 - 1%	

10%	
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1x1	 3x3	 5x5	 7x7	
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Vision	range	

None	
Discrete	
Con:nuous	

Table 2: Traffic junction task. Left: failure rates (%) for different types of communication and module func-
tion f(.). Continuous consistently improves performance, over the dense baseline and no communication.
Middle: Game variants. In the easy case, discrete communication does help, but still less than continuous.
On the hard version, local communication (see Section 3.2) does at least as well as broadcasting to all
agents. Right: As visibility in the environment descreases, the importance of communication grows.

where Ct is the number of collisions occurring at time t, and N t is number of cars present. The
simulation is terminated after 40 steps and is classified as a failure if one or more more collisions
have occurred. Details of the input representation, training and other game variations can be found in
Appendix A.

In Table 2, we show the probability of failure of a variety of different module/communication
method pairs. Continuous communication between cars significantly reduces the failure rate for
all module types. Discrete communication did not give any benefit, except for the easy game. We
also tried a dense communication baseline by allowing the matrix T to be arbitrary, resulting in a
single large fully-connected network controlling all agents. However, this did not work as well as
continuous communication (a video showing this model before and after training can be found at
https://youtu.be/onK98y-UNHQ). We also explores how partial visibility within the environment
effects the advantage given by communication. As the vision range of each agent decreases, the
advantage of communication increases. Impressively, with zero visibility (the cars are driving blind)
the continuous communication model is still able to succeed 90% of the time.

5.2.2 Analysis of Communication
We now attempt to understand what the agents communicate when performing the junction task.
We start by recording the hidden state hi

j

of each agent and the corresponding communication
vectors c̃i+1

j

= Ci+1hi

j

(the contribution agent j at step i + 1 makes to the hidden state of other
agents). Fig. 3(left) and Fig. 3(right) show the 2D PCA projections of the communication and hidden
state vectors respectively. These plots show a diverse range of hidden states but far more clustered
communication vectors, many of which are close to zero. This suggests that while the hidden state
carries information, the agent often prefers not to communicate it to the others unless necessary. This
is a possible consequence of the broadcast channel: if everyone talks at the same time, no-one can
understand. See Appendix B for norm of communication vectors and brake locations.

To better understand the meaning behind the communication vectors, we ran the simulation with
only two cars and recorded their communication vectors and locations whenever one of them braked.
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In Table 2, we show the probability of failure of a variety of different module/communication
method pairs. Continuous communication between cars significantly reduces the failure rate for
all module types. Discrete communication did not give any benefit, except for the easy game. We
also tried a dense communication baseline by allowing the matrix T to be arbitrary, resulting in a
single large fully-connected network controlling all agents. However, this did not work as well as
continuous communication (a video showing this model before and after training can be found at
https://youtu.be/onK98y-UNHQ). We also explores how partial visibility within the environment
effects the advantage given by communication. As the vision range of each agent decreases, the
advantage of communication increases. Impressively, with zero visibility (the cars are driving blind)
the continuous communication model is still able to succeed 90% of the time.

5.2.2 Analysis of Communication
We now attempt to understand what the agents communicate when performing the junction task.
We start by recording the hidden state hi
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of each agent and the corresponding communication
vectors c̃i+1
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(the contribution agent j at step i + 1 makes to the hidden state of other
agents). Fig. 3(left) and Fig. 3(right) show the 2D PCA projections of the communication and hidden
state vectors respectively. These plots show a diverse range of hidden states but far more clustered
communication vectors, many of which are close to zero. This suggests that while the hidden state
carries information, the agent often prefers not to communicate it to the others unless necessary. This
is a possible consequence of the broadcast channel: if everyone talks at the same time, no-one can
understand. See Appendix B for norm of communication vectors and brake locations.

To better understand the meaning behind the communication vectors, we ran the simulation with
only two cars and recorded their communication vectors and locations whenever one of them braked.
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Lever pulling task

• 500 agents with unique IDs
• In each episode, 5 of  them randomly chosen
• There 5 different levers to pull
• If  all agents pull different levers à WIN

5 Experiments
5.1 Lever Pulling Task
We start with a very simple game that requires the agents to communicate in order to win. This
consists of m levers and a pool of N agents. At each round, m agents are drawn at random and they
must each choose a lever to pull, simultaneously with the other m � 1 agents, after which the round
ends. The goal is for each of them to pull a different lever. Correspondingly, all agents receive reward
proportional to the number of distinct levers pulled. Each agent can see its own identity, and nothing
else, thus s

j

= j.

We implement the game with m = 5 and N = 500. We use a CommNet with two communication
steps (K = 2) and skip connections from (5). The encoder r is a lookup-table with N entries of
128D. Each f i is a two layer neural net with ReLU nonlinearities that takes in the concatenation
of (hi, ci, h0

), and outputs a 128D vector. The decoder is a linear layer plus softmax, producing a
distribution over the m levers, from which we sample to determine the lever to be pulled. We also use
a communication free version of the model that has c zeroed during training. The results are shown
in Table 1. The metric is the number of distinct levers pulled divided by m = 5, averaged over 500

trials, after seeing 50000 batches of size 64 during training. We explore both reinforcement (see (1))
and direct supervision (where the sorted ordering of agent IDs are used as targets). In both cases, the
CommNet with communication performs significantly better than the version without it.

Training method
Communication Supervised Reinforcement
None 0.59 0.59
CommNet 0.99 0.94

Table 1: Results of lever game (#distinct levers pulled)/(#levers) for our CommNet and no communi-
cation models, using two different training approaches. Allowing the agents to communicate enables
them to succeed at the task.

5.2 Cooperative Games
In this section, we consider two multi-agent tasks in the MazeBase environment [27] that use reward
as their training signal. The first task is to control cars passing through a traffic junction to maximize
the flow while minimizing collisions. The second task is to control multiple agents in combat against
enemy bots.

We experimented with several module types. With a feedforward MLP, the module f i is a single
layer network and K = 2 communication steps are used. For an RNN module, we also used a single
layer network for f t, but shared parameters across time steps. Finally, we used an LSTM for f t. In
all modules, the hidden layer size is set to 50. All the models use skip-connections. Both tasks are
trained for 300 epochs, each epoch being 100 weight updates with RMSProp [32] on mini-batch of
288 game episodes (distributed over multiple CPU cores). In total, the models experience ⇠8.6M
episodes during training. We repeat all experiments 5 times with different random initializations, and
report mean value along with standard deviation. The training time varies from a few hours to a few
days depending on task and module type.

5.2.1 Traffic Junction

This consists of a 4-way junction on a 14 ⇥ 14 grid as shown in Fig. 2(left). At each time step, new
cars enter the grid with probability parrive from each of the four directions. However, the total number
of cars at any given time is limited to Nmax = 10. Each car occupies a single cell at any given time
and is randomly assigned to one of three possible routes (keeping to the right-hand side of the road).
At every time step, a car has two possible actions: gas which advances it by one cell on its route or
brake to stay at its current location. A car will be removed once it reaches its destination at the edge
of the grid.

Two cars collide if their locations overlap. A collision incurs a reward r
coll

= �10, but does not affect
the simulation in any other way. To discourage a traffic jam, each car gets reward of ⌧r

time

= �0.01⌧
at every time step, where ⌧ is the number time steps passed since the car arrived. Therefore, the
reward at time t is:

r(t) = Ctr
coll

+

N

tX

i=1

⌧
i

r
time

,
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Experiment: bag to sequence

• Problem: given a set of  words, arrange them in 
right order.

• Separate streams for each words
• After 2 hops, each stream output its location
• Data: Gigaword, 5 words, 2 layer MLP as f

{is, mouse, cat, chasing} à “cat is chasing mouse”

5-gram by KenLM Our model

Error per word 40% 26%


