From temporal abstraction to programs

Doina Precup
McGill University

With thanks to Rich Sutton, Satinder Singh, Pierre-Luc Bacon, Jean Harb

NIPS NAMPI workshop, December 2016

What is temporal abstraction?

e Consider an activity such as cooking dinner

— High-level steps: choose a recipe, make a grocery list, get groceries,

cook,...
— Medium-level steps: get a pot, put ingredients in the pot, stir until

smooth, check the recipe ...
— Low-level steps: wrist and arm movement while driving the car,

stirring, ...

e All have to be seamlessly integrated!
e Cf. macro actions in classical Al, controllers in robotics

NIPS NAMPI workshop, December 2016 1

Formalization of temporal abstraction

e Hierarchical abstract machines (Parr, 1998)

e MAXQ (Dietterich, 1998)

e Dynamic motion primitives (Schaal et al. 2004)

e Skills (Konidaris et al, 2009)

e Options (Sutton, Precup & Singh, 1999; Precup, 2000)

NIPS NAMPI workshop, December 2016

Options framework

e Suppose we have an MDP (S, A, r, P,~)

e An option w consists of 3 components

— An initiation set of states I,, C S (aka precondition)
— A policy m, : § x A — [0, 1]
Tw(a|s) is the probability of taking a in s when following option w
— A termination condition 8, : S — [0, 1]:
B, (s) is the probability of terminating the option w upon entering s
e Eg., robot navigation: if there is no obstacle in front (1), go forward
(7,,) until you get too close to another object (3,,)

Cf. Sutton, Precup & Singh, 1999; Precup, 2000

NIPS NAMPI workshop, December 2016 3

Options as behavioral programs

e (Call-and-return execution

— Option is a subroutine which gets called by a policy over options 7
— When called, w is pushed onto the execution stack
— During the option execution, the program looks at certain variables
(aka state) and executes an instruction (aka action) until a termination
condition is reached
— The option can keep track of additional /ocal variables, eg counting
number of steps, saturation in certain features (e.g. Comanici, 2010)
— Options can invoke other options
e Interruption
— At each step, one can check if a better alternative has become available
— If so, the option currently executing is interrupted (special form of
concurrency)
e [he option identity is also a form of memory: what is the agent currently
trying to achieve? Cf. Shaul et al, 2014, Kulkarni et al, 2016

NIPS NAMPI workshop, December 2016 4

Alternative formalisms

e MAXQ (Dietterich, 2000): specify a graph of sub-tasks

e Hierarchies of Abstract Machines (Parr & Russell, 1997): abstractions
given by automata

e Andre (2003): programming language (ALISP) which allows specifying
HAM programs, learning parts of them

o —- - ToDoor(dest,sp) MoYe(r)

NIPS NAMPI workshop, December 2016

Option models

e Option model has two parts:

1. Expected reward r,(s): the expected return during w's execution from
S
— Needed because it is used to update the agent's internal
representations
2. Transition model P,(s’|s): a sub-probability distribution over next
states (reflecting the discount factor v and the option duration) given
that w executes from s
— P specifies where the agent will end up after the option/program
execution and when termination will happen

e Models are predictions about the future, conditioned on the option being
executed

NIPS NAMPI workshop, December 2016 6

Option models provide semantics

e Programming languages: preconditions (initiation set) and postconditions
e Models of options represent (probabilistic) post-conditions
e Models that are compositional, can be used to reason about the policy

over options
e Sequencing

Yojws = Ty + Pw1r02

Pw1w2 — Pwlpwg

Cf. Sutton et al, 1999, Sorg & Singh, 2010
e Stochastic choice: can take expectations of reward and transition models
e These are sufficient conditions to allow Bellman equations to hold
e Silver & Ciosek (2012): re-write model in one matrix, compose models
to construct programs
Eg. good generalization in Towers of Hanoi

NIPS NAMPI workshop, December 2016 7

MDP + Options = Semi-Markov Decision Precess

Time ——

MDP ,/\/\/ IState
SMDP W

Options —v/\ /\/,
over MDP A

e Introducing options in an MDP induces a related semi-MDP

e Hence all planning and learning algorithms from classical MDPs transfer
directly to options (Cf. Sutton, Precup & Singh, 1999; Precup, 2000)

e But planning and learning with options can be much faster!

NIPS NAMPI workshop, December 2016 8

lllustration: Navigation

with cell-to-cell
primitive actions

with room-to-room
options

lteration #0 Iteration #1 lteration #2

NIPS NAMPI workshop, December 2016

lllustration: Random landmarks

e Generate a lot of options, then worry about which are useful!

e Large set of landmarks, i.e. states in the environment, chosen at random
(Mann, Mannor & Precup, 2015)

e Rough planner which can get to a landmark from its vicinity, by solving
a deterministic relaxation of the MDP

PFV]

1.0 . T 1.0

0.8} ‘ 1 08 ij%
0.6 |- 41 06 @ @ 4
041 ‘ .

0.2} 7 0.2 7
N-_ 8 0 = (@@%
4 0.6

0.0 02 04 06 08 1.0 g o2 o 08 1.0

LAV

Landmark-based approximate value iteration gets a good solution much faster!

NIPS NAMPI workshop, December 2016 10

The anatomy of the reward option model

e Primitive action model: r,(s) = E[r¢|s; = s, a; = a]
e Option model:

ro(s) =Elry +yria1 + ... st = s,wp = W]

e This expectation indicates a Markov-style property, as it depends only on
the identity of the state and the option, not on the time step

e Notice the model is basically a value function so we can write Bellman
equations for the model:

rw(s) = wa(s, a)lr(s,a) + Z’Y(l — Bu)rw(s)]

e This means that we can use RL methods to learn the models of options!
e Very similar equations hold for the transition model

NIPS NAMPI workshop, December 2016 11

Intra-option algorithms

Learning about one option at a time is very inefficient

In fact, we may not want to execute options at all

Instead, learn about all options consistent with the behaviour
In some sense, a form of attention

E.g. action-value function, tabular case

On single-step transition (s,a,r,s’), for all w that could have been
executing in s and taken a:

Qo(s,w) = Qals,w)+afra(s) +7(1 — Bu(s))Qals w) +
+ Bu(s)y Y _maxQo(s',w') — Qals,w)]

e In general function approximation, importance sampling will need to be
used (several papers on this)

NIPS NAMPI workshop, December 2016 12

Frontier: Option Discovery

e Options can be given by a system designer

e |f subgoals / secondary reward structure is given, the option policy can be
obtained, by solving a smaller planning or learning problem (cf. Precup,
2000)

o What is a good set of subgoals / options?
e This is a representation discovery problem
e Studied a lot over the last 15 years

e Bottleneck states and change point detection currently the most
successful methods

NIPS NAMPI workshop, December 2016 13

Goals of our current work

e Explicitly state an optimization objective and then solve it to find a set
of options

e Handle both discrete and continuous set of state and actions

e Learning options should be continual (avoid combinatorially-flavored
computations)

e Options should provide improvement within one task (or at least not
cause slow-down...)

NIPS NAMPI workshop, December 2016 14

Actor-critic architecture

Actor
r){ PO}}CY } N\
Gradient

Critic TD error
s)f Valu'le Qpi1
| function

Tt

\ ())

L Environment ¥

e Clear optimization objective: average or discounted return
e Continual learning
e Handles both discrete and continuous states and actions

NIPS NAMPI workshop, December 2016

Option-critic architecture

Behavior policy

Gradients

5 Critic WEQ TD error ay
7

~ Environment [-

e Parameterize internal policies and termination conditions
e Policy over options is computed by a separate process (planning, RL, ...)

NIPS NAMPI workshop, December 2016 16

Formulation

e The option-value function of a policy over options 7 is given by

Qr,(s,w) Zﬂ'w als)Qu(s,w,a)
where

Qu(s,w,a) =14(s +’VZP s')

e The last quantity is the utility from s’ onwards, given that we arrive in
s’ using w

U(w,s") = (1 = Bu(s)Qnqg (s, w) + Bu(8) Vig ()
e We parameterize the internal policies by 8, as m,, ¢, and the termination

conditions by v, as 3, .
e Note that 0 and v can be shared over the options!

NIPS NAMPI workshop, December 2016 17

Main result: Gradient updates

e Suppose we want to optimize the expected return: E {Qm(s, w)}
e The gradient wrt the internal policy parameters 6 is given by:

E {alog ﬂgée(a‘S)QU(Sa W, CL)}

This has the usual interpretation: take better primitives more often inside
the option

e The gradient wrt the termination parameters v is given by:

. {_aﬁgﬁs')Am(S,,w)}

where A, = Qr, — Vr, is the advantage function
This means that we want to lengthen options that have a large advantage

NIPS NAMPI workshop, December 2016 18

Results: Options transfer

600 : : i
: — SARSA(0)
1110 EESRRRSRS F PP ST — AC-PG .
il — OC 4 options
A00 e — OC 8 options |-

500 1000 1500 2000
Episodes

e 4-rooms domain, tabular representations, value functions learned by Sarsa

e Learning in the first task no slower than using primitives

e Learning once the goal is moved faster with the options

NIPS NAMPI workshop, December 2016 19

Results: Nonlinear function approximation

/A

ma(:|s)

’\\+ e R f { 5 w ($) }
{m(ls)}

e Atari simulator, DQN to learn value function over options, actor as above

2500

— Testing 8000

10000 [} ' 10000{(— Moving avg.10 ' il
2000+ Y DON Il
5000 1 HM\AMF %WMWM’W 00 Q ﬂ‘l | J\%lﬁll 6000 I ﬂl i
0 | ‘ A AT |
3 6000 bk I«M)ﬂ\]w“” \IV || 1500 /ry . 6000 ; "I”'%"‘M e { 4000 “j | lrtmlg [
£ 4000 /ﬂ Y | 1000 4000 er IY'M] I{ 20001/ N
— Testing // — Testing ,l — Testing
2000) - 1]\)/[(3\1/\}ng avg. 10| 5()()‘1/ - 1]\)/[(3\Il\}ng avg. 10| ZOOOM o — II\D/IS\I/\}ng avg. 10|
0 0
0 50 100 150 200 O 50 100 150 200 0 50 100 150 200 0O 50 100 150 200
Epoch Epoch Epoch Epoch
p p p p
(a) Asterix (b) Ms. Pacman (c) Seaquest (d) Zaxxon

e Performance matching or better than DQN

NIPS NAMPI workshop, December 2016 20

Results: Learned options are intuitive

e In rooms environment, terminations are more likely near hallways
(although there are no pseudo-rewards provided)

e In Seaquest, separate options are 1I.géarned to go up and down

Option 0 Option 1

NIPS NAMPI workshop, December 2016 21

Conclusions and future work

e Temporal abstraction methods developed in reinforcement learning
provide syntax and semantics of behavioral programs

e Option-critic allows using policy gradient ideas for continual option
construction

e Lots of things to do:

— More empirical work in option construction
— Tighter integration with Neural Turing Machines and similar models
— Other execution models

NIPS NAMPI workshop, December 2016 22

