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What is temporal abstraction?

• Consider an activity such as cooking dinner

– High-level steps: choose a recipe, make a grocery list, get groceries,
cook,...

– Medium-level steps: get a pot, put ingredients in the pot, stir until
smooth, check the recipe ...

– Low-level steps: wrist and arm movement while driving the car,
stirring, ...

• All have to be seamlessly integrated!

• Cf. macro actions in classical AI, controllers in robotics
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Formalization of temporal abstraction

• Hierarchical abstract machines (Parr, 1998)

• MAXQ (Dietterich, 1998)

• Dynamic motion primitives (Schaal et al. 2004)

• Skills (Konidaris et al, 2009)

• Options (Sutton, Precup & Singh, 1999; Precup, 2000)
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Options framework

• Suppose we have an MDP 〈S,A, r, P, γ〉
• An option ω consists of 3 components

– An initiation set of states Iω ⊆ S (aka precondition)
– A policy πω : S ×A → [0, 1]
πω(a|s) is the probability of taking a in s when following option ω

– A termination condition βω : S → [0, 1]:
βω(s) is the probability of terminating the option ω upon entering s

• Eg., robot navigation: if there is no obstacle in front (Iω), go forward
(πω) until you get too close to another object (βω)

Cf. Sutton, Precup & Singh, 1999; Precup, 2000
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Options as behavioral programs

• Call-and-return execution

– Option is a subroutine which gets called by a policy over options πΩ

– When called, ω is pushed onto the execution stack
– During the option execution, the program looks at certain variables

(aka state) and executes an instruction (aka action) until a termination
condition is reached

– The option can keep track of additional local variables, eg counting
number of steps, saturation in certain features (e.g. Comanici, 2010)

– Options can invoke other options
• Interruption

– At each step, one can check if a better alternative has become available
– If so, the option currently executing is interrupted (special form of

concurrency)
• The option identity is also a form of memory: what is the agent currently
trying to achieve? Cf. Shaul et al, 2014, Kulkarni et al, 2016
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Alternative formalisms

• MAXQ (Dietterich, 2000): specify a graph of sub-tasks

• Hierarchies of Abstract Machines (Parr & Russell, 1997): abstractions
given by automata

• Andre (2003): programming language (ALISP) which allows specifying
HAM programs, learning parts of them
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Figure 1: (a) The Deliver–Patrol world. Mail appears at and must be delivered to the appro-
priate location. Additional rewards appear sporadically at , , , and . The robot’s battery
may be recharged at . The robot is penalized for colliding with walls and “furniture” (small cir-
cles). (b) Three of the PHAMs in the partial specification for the Deliver–Patrol world. Right-facing
half-circles are start states, left-facing half-circles are stop states, hexagons are call states, ovals are
primitive actions, and squares are choice points. and are memory variables. When arguments to
call states are in braces, then the choice is over the arguments to pass to the subroutine. The
PHAM specifies an interrupt to clean the camera lens whenever it gets dirty; the PHAM
interrupts its patrolling whenever there is mail to be delivered.
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Figure 2: (a) A room in the Deliver–Patrol domain. The arrows in the drawing of the room indi-
cate the behavior specified by the transition function in ToDoor(dest,sp). Two arrows indicate
a “fast” move (fN,fS,fE.fW), whereas a single arrow indicates a slow move (N, S, E, W). (b) The
ToDoor(dest,sp) and Move(dir) PHAMs.
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Figure 3: The remainder of the PHAMs for the Deliver–Patrol domain. Nav(dest,sp) leaves route
choices to be learned through experience. Similarly, Patrol() does not specify the sequence of loca-
tions to check.
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Option models

• Option model has two parts:

1. Expected reward rω(s): the expected return during ω’s execution from
s
– Needed because it is used to update the agent’s internal

representations
2. Transition model Pω(s

′|s): a sub-probability distribution over next
states (reflecting the discount factor γ and the option duration) given
that ω executes from s
– P specifies where the agent will end up after the option/program

execution and when termination will happen

• Models are predictions about the future, conditioned on the option being
executed
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Option models provide semantics

• Programming languages: preconditions (initiation set) and postconditions
• Models of options represent (probabilistic) post-conditions
• Models that are compositional, can be used to reason about the policy

over options
• Sequencing

rω1ω2 = rω1 + Pω1ro2

Pω1ω2 = Pω1Pω2

Cf. Sutton et al, 1999, Sorg & Singh, 2010
• Stochastic choice: can take expectations of reward and transition models
• These are sufficient conditions to allow Bellman equations to hold
• Silver & Ciosek (2012): re-write model in one matrix, compose models

to construct programs

Eg. good generalization in Towers of Hanoi
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MDP + Options = Semi-Markov Decision Precess

SMDP

Time

MDP
State

Options 

over MDP

Fig. 1. The state trajectory of an MDP is made up of small, discrete-time transitions,
whereas that of an SMDP comprises larger, continuous-time transitions. Options
enable an MDP trajectory to be analyzed in either way.

tion 4 considers the problem of effectively combining a given set of options
into a single overall policy. For example, a robot may have pre-designed con-
trollers for servoing joints to positions, picking up objects, and visual search,
but still face a difficult problem of how to coordinate and switch between
these behaviors [17,22,38,48,50,65–67]. Sections 5 and 6 concern intra-option
learning—looking inside options to learn simultaneously about all options con-
sistent with each fragment of experience. Finally, in Section 7 we illustrate a
notion of subgoal that can be used to improve existing options and learn new
ones.

1 The Reinforcement Learning (MDP) Framework

In this section we briefly review the standard reinforcement learning frame-
work of discrete-time, finite Markov decision processes , or MDPs , which forms
the basis for our extension to temporally extended courses of action. In this
framework, a learning agent interacts with an environment at some discrete,
lowest-level time scale, t = 0, 1, 2, . . . On each time step, t, the agent perceives
the state of the environment, st ∈ S, and on that basis chooses a primitive
action, at ∈ Ast . In response to each action, at, the environment produces one
step later a numerical reward, rt+1, and a next state, st+1. It is convenient to
suppress the differences in available actions across states whenever possible;
we let A =

�
s∈S As denote the union of the action sets. If S and A, are fi-

nite, then the environment’s transition dynamics can be modeled by one-step
state-transition probabilities,

pa
ss� = Pr{st+1 = s� | st = s, at = a},

4

• Introducing options in an MDP induces a related semi-MDP

• Hence all planning and learning algorithms from classical MDPs transfer
directly to options (Cf. Sutton, Precup & Singh, 1999; Precup, 2000)

• But planning and learning with options can be much faster!
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Illustration: Navigation
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Illustration: Random landmarks

• Generate a lot of options, then worry about which are useful!

• Large set of landmarks, i.e. states in the environment, chosen at random
(Mann, Mannor & Precup, 2015)

• Rough planner which can get to a landmark from its vicinity, by solving
a deterministic relaxation of the MDP
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Figure 6: Example trajectories for policies derived from the last (K = 30) iteration of PFVI, OFVI, and
LAVI on the continuous two rooms domain. For LAVI, the landmark hyperspheres are drawn as black ovals.
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Figure 7: Two-Rooms: Comparison of planning with PFVI, OFVI, and LAVI with 100 landmarks in the
continuous two rooms domain. (a) Performance of policies derived from each iteration of PFVI, OFVI, and
LAVI. (b) Time in seconds to compute each iteration of PFVI, OFVI, and LAVI.

inventory requires making large jumps in the state-space (e.g., going from 0 inventory to maximum inventory
levels) in a single timestep.

5.3 Continuous Two Rooms Domain

We implemented a continuous-state version of the two rooms domain introduced by Şimşek and Barto
[2004]. Given the agent’s current state as a point hx, yi, the new state after executing a primitive action was
obtained by hx, yi+N (µ,�) where N (µ,�) is an instance of the normal distribution with mean µ = (�x,�y)
depending on the action (up, down, left, or right) and standard deviation � = (0.05, 0.05). If the agent was
blocked by a wall or boundary then it did not move. OFVI was given a single additional option (in addition
to the primitive actions), which transitions the agent from the doorway to the goal region. Landmarks for
LAVI and LOFVI were uniformly sampled from the state-space and di↵erent landmarks sets were sampled
for each trial.

We used Euclidean distance as a metric over the state-space and selected ⌘ = 0.05 and d+ = 15. We used
a greedy local planner that chose the action transitioning the agent closest to the landmark state, unless the
landmark and agent were in di↵erent rooms. In that case, the planner selected the action that transitioned
the closest to the doorway region. We ran all conditions for K = 30 iterations.

For the continuous Two-Rooms domain Figure 6 shows sample trajectories for the final policy derived
by PFVI, OFVI, and LAVI. Even with K = 30 iterations, PFVI was not able to derive a successful policy.
However, with additional iterations (not shown), PFVI does eventually learn a path to the goal region.
The policy derived by OFVI moves more directly toward the goal state, while the policy derived by LAVI
transitions from landmark to landmark. Although this results in a longer path to goal, LAVI is still able to
solve the task.
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LAVI and LOFVI were uniformly sampled from the state-space and di↵erent landmarks sets were sampled
for each trial.

We used Euclidean distance as a metric over the state-space and selected ⌘ = 0.05 and d+ = 15. We used
a greedy local planner that chose the action transitioning the agent closest to the landmark state, unless the
landmark and agent were in di↵erent rooms. In that case, the planner selected the action that transitioned
the closest to the doorway region. We ran all conditions for K = 30 iterations.

For the continuous Two-Rooms domain Figure 6 shows sample trajectories for the final policy derived
by PFVI, OFVI, and LAVI. Even with K = 30 iterations, PFVI was not able to derive a successful policy.
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Landmark-based approximate value iteration gets a good solution much faster!
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The anatomy of the reward option model

• Primitive action model: ra(s) = E[rt|st = s, at = a]

• Option model:

rω(s) = E[rt + γrt+1 + . . . |st = s, ωt = ω]

• This expectation indicates a Markov-style property, as it depends only on
the identity of the state and the option, not on the time step

• Notice the model is basically a value function so we can write Bellman
equations for the model:

rω(s) =
∑

a

πω(s, a)[r(s, a) +
∑

s′

γ(1− βω)rω(s′)]

• This means that we can use RL methods to learn the models of options!

• Very similar equations hold for the transition model
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Intra-option algorithms

• Learning about one option at a time is very inefficient

• In fact, we may not want to execute options at all!

• Instead, learn about all options consistent with the behaviour

• In some sense, a form of attention

• E.g. action-value function, tabular case

On single-step transition 〈s, a, r, s′〉, for all ω that could have been
executing in s and taken a:

QΩ(s, ω) = QΩ(s, ω) + α[ra(s) + γ(1− βω(s′))QΩ(s
′, ω) +

+ βω(s
′)γ
∑

s′

max
ω′

QΩ(s
′, ω′)−QΩ(s, ω)]

• In general function approximation, importance sampling will need to be
used (several papers on this)
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Frontier: Option Discovery

• Options can be given by a system designer

• If subgoals / secondary reward structure is given, the option policy can be
obtained, by solving a smaller planning or learning problem (cf. Precup,
2000)

• What is a good set of subgoals / options?

• This is a representation discovery problem

• Studied a lot over the last 15 years

• Bottleneck states and change point detection currently the most
successful methods
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Goals of our current work

• Explicitly state an optimization objective and then solve it to find a set
of options

• Handle both discrete and continuous set of state and actions

• Learning options should be continual (avoid combinatorially-flavored
computations)

• Options should provide improvement within one task (or at least not
cause slow-down...)
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Actor-critic architecture

Value
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• Clear optimization objective: average or discounted return

• Continual learning

• Handles both discrete and continuous states and actions
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Option-critic architecture
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The Option-Critic Architecture

where �QU,w(s,!, a) is the difference between the ap-
proximation and its true target. We can guarantee equal-
ity under two conditions: 1) The learning algorithm under-
lying QU,w minimizes the squared error distance and has
reached convergence 2) The gradient of the function ap-
proximator satisfies the equality:

@

@w
QU,w(s,!, a) =

@

@✓
⇡!,✓ (a | s)

1

⇡!,✓ (a | s)
(8)

This conditions simply mirror their MDP counterpart in the
original policy gradient theorem. The same conditions also
hold for the advantage function, used in the termination
gradient. This time however, we have:

@

@⇠
A⌦,⇠(s,!) =

@

@#
�!,#(s)

For more details, we invite you to consult the supplemen-
tary material.

4. Option-critic architecture

⇡⌦

QU , A⌦

Environment

atst

⇡!0
, �!0

rt

Gradients

Critic
TD error

!t

Options

Behavior policy

Figure 1: The option-critic architecture consists of a set of
options, a policy over them and a critic. Gradients can be
derived from the critic for both the intra-option policies and
termination functions. The execution model is suggested
pictorially by a switch ? over the contacts (. Switching
can only take place when a termination event is encoun-
tered.

The algorithmic implementation of theorems 1 and 2 gives
rise to the option-critic learning architecture (fig. 1), in
reference to the gradient-based actor-critic architectures
(Sutton, 1984; Peters et al., 2005; Degris et al., 2012).
Although option-critic is conceptually identical to actor-
critic, we sought to make a distinction between our holis-
tic approach to learning options and one in which intra-
option policies would be learned with regular policy gradi-
ent methods in a pseudo-reward context.

Since two types of gradients are needed to learn the options,
the critic part of the option-critic architecture consists in

Figure 2: Layout of the four-rooms domain and value func-
tion obtained by option-critic

.

QU (s,!, a) or the negative advantage function (or both).
In this work, we do not seek to use a critic for learning
the policy over options. Note that the problem of learning
a parametrized policy over options can be solved readily
using the policy gradient theorem (see section 2). Using
options has the advantage of reducing a large (potentially
continuous) set of primitive actions to a potentially much
smaller set of discrete options. In this case, the policy over
options can be found using planning methods over the op-
tions models.

5. Experiments
In order to illustrate our approach, we present some pre-
liminary experiments in the four-rooms domain (Sutton et
al., 1999). We fixed the initial state in the upper left cor-
ner and defined a terminal state in the lower right corner.
A penalty of -1 was incurred at every step and for every
action taken in the direction of a wall (resulting in a non-
elastic collision) and a terminal reward of 100 was obtained
upon taking an action leading to the goal state. Primitive
actions were defined as the one-step transitions to the next
cell in each of the four cardinal directions: north, east, west,
south. Any action could fail with probability 0.1, in which
case the agent would simply remain in the same state. The
discount factor for this MDP was set to to 0.9.

We chose to parametrize the intra-option policies using the
softmax distribution:

⇡! (a | s) =
exp✓|

!�(s,a)

P
a0 exp✓|

!�(s,a)

@

@✓
log ⇡! (a | s) = �(s, a)�

X

b

⇡! (b | s)�(s, b)

where � is a state-action basis function. In this experiment,
we used a simple a one-hot encoding of state-action pairs
as basis functions. We defined the termination through the

• Parameterize internal policies and termination conditions

• Policy over options is computed by a separate process (planning, RL, ...)
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Formulation

• The option-value function of a policy over options πΩ is given by

QπΩ
(s, ω) =

∑

a

πω(a|s)QU(s, ω, a)

where
QU(s, ω, a) = ra(s) + γ

∑

s′

Pa(s
′|s)U(ω, s′)

• The last quantity is the utility from s′ onwards, given that we arrive in
s′ using ω

U(ω, s′) = (1− βω(s′))QπΩ
(s′, ω) + βω(s

′)VπΩ
(s′)

• We parameterize the internal policies by θ, as πω,θ, and the termination
conditions by ν, as βω,ν
• Note that θ and ν can be shared over the options!
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Main result: Gradient updates

• Suppose we want to optimize the expected return: E
{
QπΩ

(s, ω)
}

• The gradient wrt the internal policy parameters θ is given by:

E
{
∂ log πω,θ(a|s)

∂θ
QU(s, ω, a)

}

This has the usual interpretation: take better primitives more often inside
the option

• The gradient wrt the termination parameters ν is given by:

E
{
−∂βω,ν(s

′)

∂ν
AπΩ

(s′, ω)

}

where AπΩ
= QπΩ

− VπΩ
is the advantage function

This means that we want to lengthen options that have a large advantage
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Results: Options transfer
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• 4-rooms domain, tabular representations, value functions learned by Sarsa

• Learning in the first task no slower than using primitives

• Learning once the goal is moved faster with the options
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Results: Nonlinear function approximation

Figure 3: Termination probabilities for the option-critic
agent learning with 4 options. The darkest color represents
the walls in the environment while lighter colors encode
higher termination probabilities.

In the two temporally extended settings, with 4 options
and 8 options, termination events are more likely to occur
near the doorways (Figure 3), agreeing with the intuition
that they would be good subgoals. As opposed to (Sutton,
Precup, and Singh 1999), we did not encode this knowledge
ourselves but simply let the agents find options that would
maximize the expected discounted return.

Pinball Domain

Figure 4: Pinball: Sample trajectory of the solution found
after 250 episodes of training using 4 options All options
(color-coded) are used by the policy over options in success-
ful trajectories. The initial state is in the top left corner and
the goal is in the bottom right one (red circle).

In the Pinball domain (Konidaris and Barto 2009), a ball
must be guided through a maze of arbitrarily shaped poly-
gons to a designated target location. The state space is con-
tinuous over the position and velocity of the ball in the x-
y plane. At every step, the agent must choose among five
discrete primitive actions: move the ball faster or slower, in
the vertical or horizontal direction, or take the null action.
Collisions with obstacles are elastic and can be used to the
advantage of the agent. In this domain, a drag coefficient of
0.995 effectively stops ball movements after a finite num-
ber of steps when the null action is chosen repeatedly. Each
thrust action incurs a penalty of �5 while taking no action
costs�1. The episode terminates with +10000 reward when
the agent reaches the target. We interrupted any episode tak-
ing more than 10000 steps and set the discount factor to 0.99.

We used intra-option Q-learning in the critic with linear
function approximation over Fourier bases (Konidaris et al.

2011) of order 3. We experimented with 2, 3 or 4 options.
We used Boltzmann policies for the intra-option policies and
linear-sigmoid functions for the termination functions. The
learning rates were set to 0.01 for the critic and 0.001 for
both the intra and termination gradients. We used an epsilon-
greedy policy over options with ✏ = 0.01.
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Figure 5: Learning curves in the Pinball domain.

In (Konidaris and Barto 2009), an option can only be
used and updated after a gestation period of 10 episodes. As
learning is fully integrated in option-critic, by 40 episodes a
near optimal set of options had already been learned in all
settings. From a qualitative point of view, the options ex-
hibit temporal extension and specialization (fig. 4). We also
observed that across many successful trajectories the red op-
tion would consistently be used in the vicinity of the goal.

Arcade Learning Environment
We applied the option-critic architecture in the Arcade
Learning Environment (ALE) (Bellemare et al. 2013) using
a deep neural network to approximate the critic and repre-
sent the intra-option policies and termination functions. We
used the same configuration as (Mnih et al. 2013) for the
first 3 convolutional layers of the network. We used 32 con-
volutional filters of size 8⇥8 and stride of 4 in the first layer,
64 filters of size 4 ⇥ 4 with a stride of 2 in the second and
64 3 ⇥ 3 filters with a stride of 1 in the third layer. We then
fed the output of the third layer into a dense shared layer of
512 neurons, as depicted in Figure 6. We fixed the learning
rate for the intra-option policies and termination gradient to
0.00025 and used RMSProp for the critic.
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Figure 6: Deep neural network architecture. A concatenation
of the last 4 images is fed through the convolutional layers,
producing a dense representation shared across intra-option
policies, termination functions and policy over options.

We represented the intra-option policies as linear-softmax

• Atari simulator, DQN to learn value function over options, actor as above
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Figure 8: Learning curves in the Arcade Learning Environment. The same set of parameters was used across all four games: 8
options, 0.01 termination regularization, 0.01 entropy regularization, and a baseline for the intra-option policy gradients.
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Figure 9: Up/down specialization in the solution found by option-critic when learning with 2 options in Seaquest. The top bar
shows a trajectory in the game, with “white” representing a segment during which option 1 was active and “black” for option 2.

use the DQN framework to implement a gradient-based op-
tion learner, which uses intrinsic rewards to learn the internal
policies of options, and extrinsic rewards to learn the pol-
icy over options. As opposed to our framework, descriptions
of the subgoals are given as inputs to the option learners.
Option-critic is conceptually general and does not require
intrinsic motivation for learning the options.

Discussion
We developed a general gradient-based approach for learn-
ing simultaneously the intra-option policies and termination
functions, as well as the policy over options, in order to opti-
mize a performance objective for the task at hand. Our ALE
experiments demonstrate successful end-to-end learning of
options in the presence of nonlinear function approxima-
tion. As noted, our approach only requires specifying the
number of options. However, if one wanted to use additional
pseudo-rewards, the option-critic framework would easily
accommodate it. In this case, the internal policies and ter-
mination function gradients would simply need to be taken
with respect to the pseudo-rewards instead of the task re-
ward. A simple instance of this idea, which we used in some
of the experiments, is to use additional rewards to encour-
age options that are indeed temporally extended by adding
a penalty whenever a switching event occurs. Our approach
can work seamlessly with any other heuristic for biasing the
set of options towards some desirable property (e.g. compo-
sitionality or sparsity), as long as it can be expressed as an
additive reward structure. However, as seen in the results,
such biasing is not necessary to produce good results.

The option-critic architecture relies on the policy gradient

theorem, and as discussed in (Thomas 2014), the gradient
estimators can be biased in the discounted case. By intro-
ducing factors of the form �t

Qt
i=1(1 � �i) in our updates

(Thomas 2014, eq (3)), it would be possible to obtain un-
biased estimates. However, we do not recommend this ap-
proach since the sample complexity of the unbiased esti-
mators is generally too high and the biased estimators per-
formed well in our experiments.

Perhaps the biggest remaining limitation of our work is
the assumption that all options apply everywhere. In the case
of function approximation, a natural extension to initiation
sets is to use a classifier over features, or some other form of
function approximation. As a result, determining which op-
tions are allowed may have similar cost to evaluating a pol-
icy over options (unlike in the tabular setting, where options
with sparse initiation sets lead to faster decisions). This is
akin to eligibility traces, which are more expensive than us-
ing no trace in the tabular case, but have the same complex-
ity with function approximation. If initiation sets are to be
learned, the main constraint that needs to be added is that the
options and the policy over them lead to an ergodic chain in
the augmented state-option space. This can be expressed as
a flow condition that links initiation sets with terminations.
The precise description of this condition, as well as sparsity
regularization for initiation sets, is left for future work.
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Results: Learned options are intuitive

• In rooms environment, terminations are more likely near hallways
(although there are no pseudo-rewards provided)

Figure 3: Termination probabilities for the option-critic
agent learning with 4 options. The darkest color represents
the walls in the environment while lighter colors encode
higher termination probabilities.

In the two temporally extended settings, with 4 options
and 8 options, termination events are more likely to occur
near the doorways (Figure 3), agreeing with the intuition
that they would be good subgoals. As opposed to (Sutton,
Precup, and Singh 1999), we did not encode this knowledge
ourselves but simply let the agents find options that would
maximize the expected discounted return.

Pinball Domain

Figure 4: Pinball: Sample trajectory of the solution found
after 250 episodes of training using 4 options All options
(color-coded) are used by the policy over options in success-
ful trajectories. The initial state is in the top left corner and
the goal is in the bottom right one (red circle).

In the Pinball domain (Konidaris and Barto 2009), a ball
must be guided through a maze of arbitrarily shaped poly-
gons to a designated target location. The state space is con-
tinuous over the position and velocity of the ball in the x-
y plane. At every step, the agent must choose among five
discrete primitive actions: move the ball faster or slower, in
the vertical or horizontal direction, or take the null action.
Collisions with obstacles are elastic and can be used to the
advantage of the agent. In this domain, a drag coefficient of
0.995 effectively stops ball movements after a finite num-
ber of steps when the null action is chosen repeatedly. Each
thrust action incurs a penalty of �5 while taking no action
costs�1. The episode terminates with +10000 reward when
the agent reaches the target. We interrupted any episode tak-
ing more than 10000 steps and set the discount factor to 0.99.

We used intra-option Q-learning in the critic with linear
function approximation over Fourier bases (Konidaris et al.

2011) of order 3. We experimented with 2, 3 or 4 options.
We used Boltzmann policies for the intra-option policies and
linear-sigmoid functions for the termination functions. The
learning rates were set to 0.01 for the critic and 0.001 for
both the intra and termination gradients. We used an epsilon-
greedy policy over options with ✏ = 0.01.
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Figure 5: Learning curves in the Pinball domain.

In (Konidaris and Barto 2009), an option can only be
used and updated after a gestation period of 10 episodes. As
learning is fully integrated in option-critic, by 40 episodes a
near optimal set of options had already been learned in all
settings. From a qualitative point of view, the options ex-
hibit temporal extension and specialization (fig. 4). We also
observed that across many successful trajectories the red op-
tion would consistently be used in the vicinity of the goal.

Arcade Learning Environment
We applied the option-critic architecture in the Arcade
Learning Environment (ALE) (Bellemare et al. 2013) using
a deep neural network to approximate the critic and repre-
sent the intra-option policies and termination functions. We
used the same configuration as (Mnih et al. 2013) for the
first 3 convolutional layers of the network. We used 32 con-
volutional filters of size 8⇥8 and stride of 4 in the first layer,
64 filters of size 4 ⇥ 4 with a stride of 2 in the second and
64 3 ⇥ 3 filters with a stride of 1 in the third layer. We then
fed the output of the third layer into a dense shared layer of
512 neurons, as depicted in Figure 6. We fixed the learning
rate for the intra-option policies and termination gradient to
0.00025 and used RMSProp for the critic.
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Figure 6: Deep neural network architecture. A concatenation
of the last 4 images is fed through the convolutional layers,
producing a dense representation shared across intra-option
policies, termination functions and policy over options.

We represented the intra-option policies as linear-softmax

• In Seaquest, separate options are learned to go up and down
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Figure 8: Learning curves in the Arcade Learning Environment. The same set of parameters was used across all four games: 8
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Figure 9: Up/down specialization in the solution found by option-critic when learning with 2 options in Seaquest. The top bar
shows a trajectory in the game, with “white” representing a segment during which option 1 was active and “black” for option 2.

use the DQN framework to implement a gradient-based op-
tion learner, which uses intrinsic rewards to learn the internal
policies of options, and extrinsic rewards to learn the pol-
icy over options. As opposed to our framework, descriptions
of the subgoals are given as inputs to the option learners.
Option-critic is conceptually general and does not require
intrinsic motivation for learning the options.

Discussion
We developed a general gradient-based approach for learn-
ing simultaneously the intra-option policies and termination
functions, as well as the policy over options, in order to opti-
mize a performance objective for the task at hand. Our ALE
experiments demonstrate successful end-to-end learning of
options in the presence of nonlinear function approxima-
tion. As noted, our approach only requires specifying the
number of options. However, if one wanted to use additional
pseudo-rewards, the option-critic framework would easily
accommodate it. In this case, the internal policies and ter-
mination function gradients would simply need to be taken
with respect to the pseudo-rewards instead of the task re-
ward. A simple instance of this idea, which we used in some
of the experiments, is to use additional rewards to encour-
age options that are indeed temporally extended by adding
a penalty whenever a switching event occurs. Our approach
can work seamlessly with any other heuristic for biasing the
set of options towards some desirable property (e.g. compo-
sitionality or sparsity), as long as it can be expressed as an
additive reward structure. However, as seen in the results,
such biasing is not necessary to produce good results.

The option-critic architecture relies on the policy gradient

theorem, and as discussed in (Thomas 2014), the gradient
estimators can be biased in the discounted case. By intro-
ducing factors of the form �t

Qt
i=1(1 � �i) in our updates

(Thomas 2014, eq (3)), it would be possible to obtain un-
biased estimates. However, we do not recommend this ap-
proach since the sample complexity of the unbiased esti-
mators is generally too high and the biased estimators per-
formed well in our experiments.

Perhaps the biggest remaining limitation of our work is
the assumption that all options apply everywhere. In the case
of function approximation, a natural extension to initiation
sets is to use a classifier over features, or some other form of
function approximation. As a result, determining which op-
tions are allowed may have similar cost to evaluating a pol-
icy over options (unlike in the tabular setting, where options
with sparse initiation sets lead to faster decisions). This is
akin to eligibility traces, which are more expensive than us-
ing no trace in the tabular case, but have the same complex-
ity with function approximation. If initiation sets are to be
learned, the main constraint that needs to be added is that the
options and the policy over them lead to an ergodic chain in
the augmented state-option space. This can be expressed as
a flow condition that links initiation sets with terminations.
The precise description of this condition, as well as sparsity
regularization for initiation sets, is left for future work.
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Conclusions and future work

• Temporal abstraction methods developed in reinforcement learning
provide syntax and semantics of behavioral programs

• Option-critic allows using policy gradient ideas for continual option
construction

• Lots of things to do:

– More empirical work in option construction
– Tighter integration with Neural Turing Machines and similar models
– Other execution models
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