Imperial College
London

What use is Abstraction in Deep Program

Induction?

Stephen Muggleton

Department of Computing
Imperial College, London, UK

R & Q. Xl m@
COCDWDE WD \E\

Meta-Interpretive Learning (MLJ, 2015)
Recursive solution

f(A,B):-f3(A,B),at_end(B).
f(A,B):-f3(A,C),f(C,B).

f3(A,B):-f2(A,C),move_right(C,B).
f2(A,B):-turn_cup_over(A,C),f1(C,B).
f1(A,B):-wants_tea(A),pour_tea(A,B).
f1(A,B):-wants_coffee(A),pour_coffee(A,B).

Meta-Interpretive Learning
Abstraction and Invention

Shorter program

f(A,B):-until(A,B,at_end,f3).
f3(A,B):-f2(A,C),move_right(C,B).

f2(A,B):-turn_cup_over(A,C),f1(C,B).

f1(A,B):-ifthenelse(A,B,wants_tea, pour_tea, pour_coffee).

Alternation of Abstraction and Invention steps

— Abstract — Invent — Abstract
f until f3,f2,f1 ifthenelse

Abstraction and Invention - Robot example

Higher-order definition
until(S1,S2,Cond,Do) «— Cond(S1)
until(S1,S2,Cond,Do) « not(Cond(S1)), Do(S1,52)

Abstraction
f(A,B) <— until(A,B,at_end,f3)

Invention
f3(A,B) «— f2(A,C),move_right(C,B)

Metarules

Name

Meta-Rule

Order

Base

P(z,y) «— Q(z,y)

P>Q

Chain

P>Q,P>R

TaillRec

P(x,y) «+ Q(x, z), R(2,y)
P(z,y) « Q(z, 2), P(2,y)

P> Q,
r>=z=Y

Curry2

P(z,y) «— Q(R,z,y)

P>qQ

HChain

P(Q? x? y) A R(Q? x? Z)) S(Q? Z? y)

P>RS*>R

Metagol (ECAI14,1JCAI15,1JCAIL6)

prove([],H,H).

prove([Atom|Atoms],H1,H2):-
prove_aux(Atom,H1,H3),
prove(Atoms,H3,H2).

prove_aux(Atom,H1,H2):-
metarule(Name,Subs,(Atom :- Body)),

new_metasub(H1,sub(Name,Subs)),

abduce(H1,H3,sub(Name,Subs)),
prove(Body,H3,H2).

Results - Waiter (IJCAIL16)

Proposition 1: Sample complexity proportional to program size

Predictive accuracy Learning time

100

| | —@— Metagol 41

—&— Metagol B |
IK\/’/

I ! !
2 3 4 2 3 4

No. training examples No. training examples

Predictive accuracy (%)
Learning time (seconds)

| | —o— Metagol 4 1
—m— Metagol
Default

Draughtsman’s assistant demo

Learning from drawings Use simplified version of Postscript
language with primitives draw, turn90, aturn90 in image array.

One-shot learning Each drawing learned from single example
using Metarules and Higher-order definitions.

Learn symbols as programs For instance, the letter L as a
drawing.

Learn numbers as higher-order definitions For instance, the
number two (three, four) applied to L gives two (three, four) L’s.

Incremental learning Larger programs learned by building on
previously learned programs.

Conclusions and Further Work
General method of introducing higher-order constructs such as
while, until, ifthenelse, map
Leads to reduction in program size
Sample complexity reduction and search space reduction

Further work - non-functional constructs such as closure to learn

ancestor(X,Y) « closure(parent, X,Y)

Applications in planning, vision and NLP

Bibliography

e A. Cropper and S.H. Muggleton. Learning higher-order logic
programs through abstraction and invention. In Proceedings of
the 25th International Joint Conference Artificial Intelligence
(IJCAI 2016), pages 1418-1424. 1JCAI, 2016.

e A. Cropper, S.H. Muggleton. Learning efficient logical robot
strategies involving composable objects. IJCAI 2015.

e D. Lin, E. Dechter, K. Ellis, J.B. Tenenbaum, S.H. Muggleton.
Bias reformulation for one-shot function induction. ECAI 2014.

