
What use is Abstraction in Deep Program

Induction?

Stephen Muggleton

Department of Computing
Imperial College, London, UK



Robotic waiter

T T C T C

Initial state Final state



Meta-Interpretive Learning (MLJ, 2015)
Recursive solution

f(A,B):-f3(A,B),at end(B).

f(A,B):-f3(A,C),f(C,B).

f3(A,B):-f2(A,C),move right(C,B).

f2(A,B):-turn cup over(A,C),f1(C,B).

f1(A,B):-wants tea(A),pour tea(A,B).

f1(A,B):-wants coffee(A),pour coffee(A,B).



Meta-Interpretive Learning
Abstraction and Invention

Shorter program

f(A,B):-until(A,B,at end,f3).

f3(A,B):-f2(A,C),move right(C,B).

f2(A,B):-turn cup over(A,C),f1(C,B).

f1(A,B):-ifthenelse(A,B,wants tea, pour tea, pour coffee).

Alternation of Abstraction and Invention steps

→ Abstract → Invent → Abstract

f until f3,f2,f1 ifthenelse



Abstraction and Invention - Robot example

Higher-order definition

until(S1,S2,Cond,Do)← Cond(S1)

until(S1,S2,Cond,Do)← not(Cond(S1)), Do(S1,S2)

Abstraction

f(A,B)← until(A,B,at end,f3)

Invention

f3(A,B)← f2(A,C),move right(C,B)



Metarules

Name Meta-Rule Order

Base P (x, y)← Q(x, y) P ≻ Q

Chain P (x, y)← Q(x, z), R(z, y) P ≻ Q, P ≻ R

TailRec P (x, y)← Q(x, z), P (z, y) P ≻ Q,

x ≻ z ≻ y

Curry2 P (x, y)← Q(R, x, y) P ≻ Q

HChain P (Q, x, y)← R(Q, x, z), S(Q, z, y) P ≻ R, S ≻ R



Metagol (ECAI14,IJCAI15,IJCAI16)

prove([],H,H).

prove([Atom|Atoms],H1,H2):-

prove aux(Atom,H1,H3),

prove(Atoms,H3,H2).

prove aux(Atom,H1,H2):-

metarule(Name,Subs,(Atom :- Body)),

new metasub(H1,sub(Name,Subs)),

abduce(H1,H3,sub(Name,Subs)),

prove(Body,H3,H2).



Results - Waiter (IJCAI16)

Proposition 1: Sample complexity proportional to program size

Predictive accuracy Learning time

1 2 3 4 5
20

40

60

80

100

No. training examples

P
re

d
ic

ti
v
e

ac
cu

ra
cy

(%
)

MetagolAI

Metagol

Default

1 2 3 4 5
0

200

400

600

No. training examples

L
ea

rn
in

g
ti

m
e

(s
ec

o
n

d
s)

MetagolAI

Metagol



Draughtsman’s assistant demo

Learning from drawings Use simplified version of Postscript
language with primitives draw, turn90, aturn90 in image array.

One-shot learning Each drawing learned from single example
using Metarules and Higher-order definitions.

Learn symbols as programs For instance, the letter L as a
drawing.

Learn numbers as higher-order definitions For instance, the
number two (three, four) applied to L gives two (three, four) L’s.

Incremental learning Larger programs learned by building on
previously learned programs.



Conclusions and Further Work

• General method of introducing higher-order constructs such as
while, until, ifthenelse, map

• Leads to reduction in program size

• Sample complexity reduction and search space reduction

• Further work - non-functional constructs such as closure to learn

ancestor(X, Y )← closure(parent, X, Y )

• Applications in planning, vision and NLP



Bibliography

• A. Cropper and S.H. Muggleton. Learning higher-order logic
programs through abstraction and invention. In Proceedings of
the 25th International Joint Conference Artificial Intelligence
(IJCAI 2016), pages 1418-1424. IJCAI, 2016.

• A. Cropper, S.H. Muggleton. Learning efficient logical robot
strategies involving composable objects. IJCAI 2015.

• D. Lin, E. Dechter, K. Ellis, J.B. Tenenbaum, S.H. Muggleton.
Bias reformulation for one-shot function induction. ECAI 2014.


