Imperial College London

What use is Abstraction in Deep Program Induction?

Stephen Muggleton

Department of Computing Imperial College, London, UK

Robotic waiter

Meta-Interpretive Learning (MLJ, 2015) Recursive solution

 $f(A,B):-f3(A,B),at_end(B).$

f(A,B):-f3(A,C),f(C,B).

f3(A,B):-f2(A,C),move_right(C,B).

f2(A,B):-turn_cup_over(A,C),f1(C,B).

f1(A,B):-wants_tea(A),pour_tea(A,B).

f1(A,B):-wants_coffee(A),pour_coffee(A,B).

Meta-Interpretive Learning Abstraction and Invention

Shorter program

f(A,B):-until(A,B,at_end,f3).

f3(A,B):-f2(A,C),move_right(C,B).

f2(A,B):-turn_cup_over(A,C),f1(C,B).

f1(A,B):-ifthenelse(A,B,wants_tea, pour_tea, pour_coffee).

Alternation of Abstraction and Invention steps

\longrightarrow	Abstract \rightarrow	Invent \rightarrow	Abstract
f	until	f3,f2,f1	ifthenelse

Abstraction and Invention - Robot example

Higher-order definition

until(S1,S2,Cond,Do) \leftarrow Cond(S1)

until(S1,S2,Cond,Do) \leftarrow not(Cond(S1)), Do(S1,S2)

Abstraction

 $f(A,B) \leftarrow until(A,B,at_end,f3)$

Invention

 $f3(A,B) \leftarrow f2(A,C), move_right(C,B)$

Metarules

Name	Meta-Rule	Order
Base	$P(x,y) \leftarrow Q(x,y)$	$P \succ Q$
Chain	$P(x,y) \leftarrow Q(x,z), R(z,y)$	$P \succ Q, P \succ R$
TailRec	$P(x,y) \leftarrow Q(x,z), P(z,y)$	$P \succ Q,$
		$x\succ z\succ y$
Curry2	$P(x,y) \leftarrow Q(R,x,y)$	$P \succ Q$
HChain	$P(Q, x, y) \leftarrow R(Q, x, z), S(Q, z, y)$	$P \succ R, S \succ R$

Metagol (ECAI14,IJCAI15,IJCAI16)

```
prove([],H,H).

prove([Atom|Atoms],H1,H2):-

prove_aux(Atom,H1,H3),

prove(Atoms,H3,H2).

prove_aux(Atom,H1,H2):-

metarule(Name,Subs,(Atom :- Body)),

new_metasub(H1,sub(Name,Subs)),

abduce(H1,H3,sub(Name,Subs)),

prove(Body,H3,H2).
```

Results - Waiter (IJCAI16)

Proposition 1: Sample complexity proportional to program size

Draughtsman's assistant demo

Learning from drawings Use simplified version of Postscript language with primitives *draw, turn90, aturn90* in image array.

One-shot learning Each drawing learned from single example using Metarules and Higher-order definitions.

Learn symbols as programs For instance, the letter L as a drawing.

Learn numbers as higher-order definitions For instance, the number two (three, four) applied to L gives two (three, four) L's.

Incremental learning Larger programs learned by building on previously learned programs.

Conclusions and Further Work

- General method of introducing higher-order constructs such as while, until, ifthenelse, map
- Leads to reduction in program size
- Sample complexity reduction and search space reduction
- Further work non-functional constructs such as closure to learn

 $ancestor(X,Y) \leftarrow closure(parent,X,Y)$

Applications in planning, vision and NLP

Bibliography

- A. Cropper and S.H. Muggleton. Learning higher-order logic programs through abstraction and invention. In Proceedings of the 25th International Joint Conference Artificial Intelligence (IJCAI 2016), pages 1418-1424. IJCAI, 2016.
- A. Cropper, S.H. Muggleton. Learning efficient logical robot strategies involving composable objects. IJCAI 2015.
- D. Lin, E. Dechter, K. Ellis, J.B. Tenenbaum, S.H. Muggleton. Bias reformulation for one-shot function induction. ECAI 2014.