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Abstract

Recent work in neural abstract machines has proposed many useful techniques to
learn sequences of applications of discrete but differentiable operators. These tech-
niques allow us to model traditionally procedural problems using neural networks.
In this work, we are interested in using neural networks to learn to perform logic
reasoning. We propose a model that has access to differentiable operators which
can be composed to perform reasoning. These differentiable reasoning operators
were first introduced in TensorLog, a recently proposed probabilistic deductive
database. Equipped with a model than can perform logic reasoning, we further
investigate the task of inductive logic programming.

1 Introduction

Inductive logic programming (ILP) [1] refers to a broad class of problems that aim to find logic
rules that model the observed data. The observed data usually contains background knowledge
and examples, typically in the form of database relations or knowledge graphs. Inductive logic
programming is often combined with use of probabilistic logics, and is a useful technique for
knowledge base completion and other relational learning tasks [2]. However, past inductive logic
programming approaches have involved discrete search through the space of possible structures [3].
This search is expensive, and difficult to integrate with neural networks.

TensorLog [4] is a recently proposed probabilistic deductive database. The major contribution of
TensorLog is that it provides a principled way to define differentiable reasoning processes. TensorLog
reduces a broad class of logic programs to inferences made on factor graphs, with logical variables
encoded as multinomials over the domain of database constants and logical relations encoded as
factors. By “unrolling” the factor graph inference into a sequence of message passing steps, one can
obtain a differentiable function that answers a particular class of local queries against a database.

The key idea in this paper is to learn a neural network controller that composes TensorLog’s message
passing operators sequentially. Since the operations are differentiable, and can support reasoning, the
resulting “neural ILP” system can learn logic programs. These logic programs can be interpreted as
induced logic rules.

2 A neural network model for inductive logic programming

Even though the reasoning process can be made differentiable, it is still not an easy task to design
a neural network model for inductive logic programming. Many challenges remain, such as the
interface between the neural network controller and the reasoning operators, the representation of
logic rules, and the interface to dynamic memory.

To address these problems, we adapt techniques developed in neural abstract machines literature,
including Neural Programmer [5], Memory Networks [6], Differentiable Neural Computer [7], and
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Figure 1: An overview of the model

Queries Induced logic rules
father(z, x) husband(z, y) ∧ mother(y, x)
sister(z, x) daughter(z, y) ∧ mother(y, x)
husband(z, x) father(z, y) ∧ son(y, x)
uncle(z, x) brother(z, y) ∧ (father(y, x) ∨ mother(y, x))
nephew(z, x) son(z, y) ∧ (brother(y, x) ∨ sister(y, x))
niece(z, x) sister(z, y) ∧ nephew(y, x)

Table 1: Experiment results

attention mechanism [8], as well as recent work on learning procedural tasks, such as Neural Theorem
Prover [9].

The main part of the model is a recurrent neural network acting as a controller, and the controller
has access to differentiable operators and memory. Figure 1 provides an overview of the model. The
controller takes in the previous state and produces a new state to select three things via attention
mechanisms: the next operator, the first input to that operator, and the second input (if there is one).
After selection, the operator is applied to the arguments and the output is stored in the next available
memory slot.

Intuitively, the operators correspond to the mathematical operations used in message passings. The
operators map distributions over database constants to a new distribution: for example, one operator
oprelation might map a distribution over set X to a distribution over {y : relation(x, y), x ∈ X},
the set of all database constants that satisfy this particular relation with X . There are a constant
number of operators for each database predicate (i.e. relation), as well as some additional operations
for set union and intersections.

The memory has two parts. The first part contains embeddings of inputs to query. In the case of
argument retrieval query 1, the inputs to the query are the database constants and predicates. The
embeddings can be learned jointly during training [10]. The second part of the memory is used to
store intermediate operator outputs, which can be thought of as the messages being passed around in
graphical models setting.

Once trained, the model can be used to induce logic rules that connect relations in the database. For
example, if we want to know how other relations imply the relation uncle, we can ask the trained
model a query that involves uncle. The trained model will compose operators to perform reasoning
about the query. We can then read off the operators that have the most attention at each time step. If
these operators correspond to brother and father, we know that the model has correctly learned to
use these two relations to reason about uncle.

3 Experiments

We experiment with an European royal family dataset. This dataset contains 3007 entities, 28373
facts, and 12 relations. The relations are father, mother, husband, wife, son, daughter, brother, sister,
uncle, aunt, nephew, niece. We split the entities into train and test sets.

To learn to induce logic rules about a specific relation R, we let the database consists of facts about the
other relations for both train and test sets. During training, we ask the model to answer queries about
the relation R using facts in the database. The loss is the mean squared error between the model’s
answer and the true answer. The model is trained with weak supervision. Only the query input and
answer are used, and intermediate steps do not have supervision. Table 1 lists induced logic rules
for some relations. We found that the model can learn not only rules with multiple predicates, but
also rules that involve disjunctions. In the future, we plan to apply the model on more complex and
challenging datasets, including web-scale knowledge bases.

1An argument retrieval query is where a constant c and a predicate P are given, and we want to infer the
distribution over {x | P (c, x) is True }
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