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Abstract

We introduce Operation and Memory Augmented Neural Networks. A work in
progress model which can utilise both externally provided operations and external
differentiable persistent memory, to perform program induction. The model will be
able to gradually add its own learned compositions to the repertoire of available
operations, allowing it to construct programs of increasing complexity as it develops
an understanding of the task domain. This gradual learning allows it to exploit
knowledge in both the externally provided operations, and the solutions to previous
tasks and hence reduce the amount of necessary training data and learning time
compared to contemporary models.

1 Introduction

There is presently considerable interest in neural network based models which can learn to induce
programs that solve some given task. This approach is different from non-neural network based
approaches to program induction [11, 14] mainly due to the differentiable memory and controller,
which allows gradient-based optimization method to search for the appropriate program.

Memory Augmented Neural Networks [5, 9, 2] resemble traditional computer architectures with a
neural network controller playing the role of the CPU and a separate memory structure serving as
working memory. This class of models often makes use of differentiable external memories, which
allow the model to be end-to-end trainable with standard gradient descent methods. This memory
augmentation transforms a traditional neural network into a kind of trainable computer, allowing it to
represent and reason about more complex structures [6]. However the state of the art in this area is
strongly influenced by the current trend of deep learning - especially with respect to the high volume
of data, and long training times required to perform acceptably.

This need for large amounts of data stems from the requirement that the model must learn all of the
actions that it should perform from scratch. The CPU controller cannot perform any meaningful
action from the outset. Unlike these purely data-driven approaches, we propose the addition of yet
another external data source, namely the ability to exploit externally supplied operations of any
functionality. How each operation can be used is subsequently learned from data (i.e. presented tasks
to be solved), and can be composed with other operations to form a solution.

Furthermore, we propose that the model is able to add to the set of operations, effectively permanently
remembering learned solutions to tasks. This approach on an inherently compositional task such as
writing programs can conceivably increase data efficiency, and decrease training time.

2 Operation and Memory Augmented Neural Networks

An Operation and Memory Augmented Neural Network (OMANN) is a learning model that combines
a neural network controller with both an external differentiable memory store, and a number of
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external operations which can be called by the controller to manipulate data in memory. When
a model finds a beneficial composition of these operations, it saves the composition as another
operation, creating a function. As more complex tasks are introduced to the OMANN, the reuse of
functions from its library helps prevent the need to relearn previous helpful solutions and thus reduce
the search space.

With differentiable memory, the model can be weakly supervised using 〈input, output〉 pairs as in
the neural programmer [10]. This is a necessary feature for the system, so that it is able to induce
programs on its own, and allows us to train the model on tasks for which the end solution is known
but the path to it is not. Additionally, external persistent memory has been shown to provide the
traditional neural network with the ability to memorize specific pieces of information for an extended
period of time [5, 6]. This helps the model generalize much better on previously unseen data, and
learn to work with variables.

Making use of supplied operations places the burden of learning on finding the required sequence of
operations, rather than learning to perform said operations, similar to how Neural Module Networks
and Neural Programmer Interpreters [1, 12] operate. The ability to induce programs composed of
external operations allows for efficient knowledge reuse and the possibility to supply the system with
specialized solutions to sub-problems that are tested and guaranteed to work. The system does not
need to learn every, possibly trivial, domain- specific operation from scratch, resulting in improved
training efficiency.

The OMANN model is naturally paired with the idea of curriculum based learning [7, 3, 13, 16]. A
well constructed curriculum will afford an instance of the model the opportunity to create its library
of composed functions, which will grow in complexity as the tasks become more challenging. While
it will be technically feasible for an instance of the model to induce complex programs from the start,
the search space will be too large for it to effectively find a solution.

3 Current Progress

As it currently stands, our implementation resembles that of the Neural Programmer [10] which
supports external operations and memory, can learn multiple programs using one LSTM controller
which reads the programs as its input data, but requires strongly supervised learning. We use a
number of differentiable stacks [15, 4, 9] and a single controller that learns one particular program
which is represented in its weights and which operates on top of the stacks. This model is able
to compose externally supplied stack operations (push, pop, addition, subtraction, comparison) to
perform simple arithmetic and list transformation tasks such as sorting and reversal, when trained
just with input/output pairs.

4 Future Work

Current development of our work immediately focuses on incremental addition of new controllers,
which represent newly learned operations. Along with a ‘key’, which is fixed, all operations will be
given a modifiable ‘context’ embedding generated from its input/output history. In order to retain as
much information as possible from previous episodes of learning process, each controller weights
are ‘frozen’ when it first meets stopping criteria for training. A ‘patching’ network, which is much
smaller than the controller, will be updated to adjust changes in contexts, or to be used in conjunction
with an existing controller to form a new controller.
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