
Meta-interpretive learning of efficient logic programs

Andrew Cropper
Department of Computing
Imperial College London

a.cropper13@imperial.ac.uk

Stephen H. Muggleton
Department of Computing
Imperial College London

s.muggleton@imperial.ac.uk

Abstract

Most forms of program induction cannot distinguish between the efficiencies of
programs, such as mergesort (O(n log n)) and bubblesort (O(n2)), and instead
rely on an Occamist bias to learn simple programs, typically based on textual
complexity. To address this issue, we introduce techniques to learn efficient logic
programs with minimal resource complexity.

1 Introduction

Suppose we are machine learning robot plans from initial/final state examples. Figure 1 shows a
scenario where a robot is learning to move a ball from square 1/1 to square 3/3. Assume the robot
can move north, south, east, and west, and can grab and drop the ball, then Figure 2 shows two plans
with corresponding Prolog programs for this problem. Although both programs transform the initial
state to the final state and both have the same textual complexity, they differ in their efficiencies.
Program (a) is inefficient because it involves two grab and two drop operations, whereas program (b)
is efficient because it requires only one grab and one drop operation.

0 1 2 3
0

1

2

3

(a) Initial state

0 1 2 3
0

1

2

3

(b) Final state

Figure 1: Robot planning example

However, most forms of program induction cannot distinguish between the efficiencies of programs,
and instead rely on an Occamist bias to learn programs with minimal textual complexity. We address
this issue by introducing techniques to learn minimal resource complexity logic programs. Resource
complexity is a generalisation of the notion of time-complexity of algorithms, in which time is a
particular resource. Our main contribution, thus far, is the introduction of a learning algorithm proven
to learn minimal resource complexity robot strategies.

2 Completed work

In [1], we describe an approach to learn optimal resource complexity robot strategies based on
the meta-interpretive learning (MIL) framework [3, 4, 2], a form of inductive logic programming

1st Workshop on Neural Abstract Machines & Program Induction (NAMPI), @NIPS 2016, Barcelona, Spain.



0 1 2 3
0

1

2

3

move(X,Y):-p3(X,Z),p3(Z,Y).
p3(X,Y):-p2(X,Z),drop(Z,Y).
p2(X,Y):-grab(X,Z),p1(Z,Y).
p1(X,Y):-north(X,Z),east(Z,Y).

(a) Inefficient solution

0 1 2 3
0

1

2

3

move(X,Y):-p3(X,Z),drop(Z,Y).
p3(X,Y):-grab(X,Z),p2(Z,Y).
p2(X,Y):-p1(X,Z),p1(Z,Y).
p1(X,Y):-north(X,Z),east(Z,Y).

(b) Efficient solution

Figure 2: Prolog programs for the planning example in Figure 1. A red square denotes a grab action
and a green circle denotes a drop action.

which supports predicate invention and recursion. A strategy is a logic program composed of actions
and fluents which transforms an initial state to a final state. The resource complexity of a strategy
is the sum of the action costs in applying a strategy to an example. We introduced MetagolO,
an implementation of the MIL framework, and proved that given sufficient numbers of examples,
MetagolO converges on resource optimal strategies. Our experimental results support this claim and
show, for instance, that when learning to sort lists, MetagolO learns an efficient quick sort strategy,
rather than an inefficient bubble sort strategy.

3 Conclusions and future work

By focusing on robot strategies, we have made an initial attempt at learning efficient logic programs.
We intend to generalise the approach to a broader class of logic programs. In [1], the resource
complexity of a hypothesised strategy is maintained in the state description. Each dyadic action has
an input state as the first term and an output state as the second term. Executing a dyadic action
increments the resource cost in the input state to form the output state. However, predicates in logic
programs do not not necessarily have input and output arguments, for instance when learning a
monadic predicate. Therefore, to generalise the approach to arbitrary logic programs, we need a
more general representation to calculate the resource complexity. In addition, we have assumed a
user-provided function to assign resource costs to each robot action. However, such information is
not necessarily available and in future work we intend to investigate whether we can learn efficient
time-complexity algorithms without user-provided costs.

This work demonstrates that it is possible to learn efficient programs and opens new avenue of
research, such as allowing algorithm designers to discover novel efficient algorithms, and for software
engineers to automatically build efficient software.

References
[1] Andrew Cropper and Stephen H. Muggleton. Learning efficient logical robot strategies involving composable

objects. In IJCAI, pages 3423–3429. AAAI Press, 2015.

[2] Andrew Cropper and Stephen H. Muggleton. Learning higher-order logic programs through abstraction and
invention. In IJCAI, pages 1418–1424. IJCAI/AAAI Press, 2016.

[3] Stephen H. Muggleton, Dianhuan Lin, Niels Pahlavi, and Alireza Tamaddoni-Nezhad. Meta-interpretive
learning: application to grammatical inference. Machine Learning, 94(1):25–49, 2014.

[4] Stephen H. Muggleton, Dianhuan Lin, and Alireza Tamaddoni-Nezhad. Meta-interpretive learning of
higher-order dyadic datalog: predicate invention revisited. Machine Learning, 100(1):49–73, 2015.

2


	Introduction
	Completed work
	Conclusions and future work

