
Learning Latent Multiscale Structure Using
Recurrent Neural Networks

Junyoung Chung1, Sungjin Ahn1, Yoshua Bengio1,2

1 Université de Montréal
2 CIFAR Senior Fellow

junyoung.chung@umontreal.ca

Abstract

In this paper, we introduce a hierarchical recurrent neural network architecture that
enables the model to adpatively capture the underlying temporal dependencies in
sequences with different timescales while not using explicit boundary information.
In experiments on character-level language modelling, we demonstrate that our
proposed model performs significantly better than previously proposed models,
achieving the state-of-the-art.

1 Introduction

Learning both hierarchical and temporal representation has been among the long-standing challenges
of RNNs in spite of the fact that hierarchical multiscale structures naturally exist in many temporal
data (Schmidhuber, 1991; Mozer, 1993; El Hihi and Bengio, 1995; Kleinberg, 2003; Koutník et al.,
2014; Chung et al., 2016). A promising approach to model such hierarchical and temporal represen-
tation is the multiscale RNNs (Schmidhuber, 1992; El Hihi and Bengio, 1995; Koutník et al., 2014).
Based on the observation that high-level abstraction changes slowly with temporal coherency while
low-level abstraction has quickly changing features sensitive to the precise local timing (El Hihi and
Bengio, 1995), the multiscale RNNs group hidden units into multiple modules of different timescales.
The multiscale approach provides the following advantages that resolve some inherent problems
of standard RNNs: (a) computational efficiency obtained by updating the high-level layers less
frequently, (b) efficiently delivering long-term dependencies with fewer updates at the high-level
layers, which mitigates the vanishing gradient problem, (c) efficient resource allocation. In addition,
the learned latent hierarchical structure can provide useful information to other downstream tasks such
as module structures in computer program learning, sub-task structures in hierarchical reinforcement
learning, and story segments in video understanding.

2 The Proposed Model

We propose a novel framework to implement the multiscale RNN, which does not require ex-
plicit boundary information. This model, called a hierarchical multiscale recurrent neural network
(HM-RNN), does not assign fixed update rates, but adaptively determines proper update times cor-
responding to different abstraction levels of the layers. We find that this model tends to learn fine
timescales for low-level layers and coarse timescales for high-level layers. To do this, we introduce a
binary boundary detector at each layer. The boundary detector is turned on only at the time steps
where a segment of the corresponding abstraction level is completely processed. Otherwise, i.e.,
during the within segment processing, it stays turned off. Using the hierarchical boundary states, we
implement three operations, UPDATE, COPY and FLUSH, and choose one of them at each time
step. The UPDATE operation is similar to the usual update rule of the long short-term memory
(LSTM) (Hochreiter and Schmidhuber, 1997), except that it is executed sparsely according to the
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Hutter Prize Wikipedia
Model BPC

Stacked LSTM (Graves, 2013) 1.67
MRNN (Sutskever et al., 2011) 1.60
GF-LSTM (Chung et al., 2015) 1.58

Grid-LSTM (Kalchbrenner et al., 2015) 1.47
MI-LSTM (Wu et al., 2016) 1.44

Recurrent Highway Networks (Zilly et al., 2016) 1.42
Recurrent Memory Array Structures (Rocki, 2016) 1.40

HyperNetworks (Ha et al., 2016) 1.39
Layer-normalized HyperNetworks (Ha et al., 2016) 1.38

Layer-normalized LSTM† 1.39
HM-LSTM 1.34

Layer-normalized HM-LSTM 1.32
PAQ8hp12 (Mahoney, 2005) 1.32
decomp8 (Mahoney, 2009) 1.28

Table 1: Bits-per-character on the Hutter Prize Wikipedia test set. (†) This model is implemented by
the authors as the standard LSTM architecture using layer normalization (Ba et al., 2016).

Figure 1: Latent hierarchical structure in the enwik8 validation set captured by the HM-LSTM

detected boundaries. The COPY operation simply copies the cell and hidden states of the previous
time step. Unlike the leaky integration of the LSTM or the Gated Recurrent Unit (GRU) (Cho et al.,
2014), the COPY retains the whole states without any loss of information. The FLUSH operation
is executed when a boundary is detected, where it first ejects the summarized representation of the
current segment to the upper layer and then reinitializes the states to start processing the next segment.
Learning to select a proper operation at each time step and to detect the boundaries, the HM-RNN
discovers the latent hierarchical structure of the sequences. We find that the straight-through esti-
mator (Bengio et al., 2013; Courbariaux et al., 2015) is efficient for training this model containing
discrete variables.

3 Experimental Results

Table 1 shows the character-level language modelling results of the HM-LSTM. The HM-LSTM
achieves the state-of-the-art BPC of 1.33. Although the HM-LSTM performs at the state-of-the-
art for the neural models, its compression performance is still behind the best models such as
PAQ8hp12 (Mahoney, 2005) and decomp8 (Mahoney, 2009). Figure 1 shows the states of the
boundary detectors of the HM-LSTM when a validation sequence from the Hutter Prize Wikipedia
dataset is fed to the model. The boundary detector of the first layer tends to detect the boundaries of
the words, where the boundary detector of the second layer tends to fire when it detects either a word
or 2, 3-grams.

A remarkable point is the fact that we do not pose any constraint on the number of boundaries that
the model can fire up. The model, however, learns that it is more beneficial to delay the information
ejection to some extent. We conjecture the reason that the model works in this way is due to the
FLUSH operation. That is, the FLUSH poses an implicit constraint on the frequency of boundary
detection because it contains both a reward (feeding fresh information to upper layers) and a penalty
(erasing accumulated information). The model finds an optimal balance between the reward and the
penalty.
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