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1 Introduction

Recently, a renewed interest in neural models of computation has sparked a surge of invention
in neural architectures that can learn to perform algorithms akin to traditional computers, using
primitives such as memory access and stack manipulation (?????). These architectures can be
trained from data through standard gradient descent methods, enabling machines to learn complex
algorithmic behavior. However, for many tasks training data is scarce. In these cases the programmer
may know the rough structure of the program, or how to implement sub-routines that are likely
necessary to solve the task. In these scenarios, the question remains how to best exploit this type of
knowledge when learning algorithms.

In this work we present a Neural Forth Abstract Machine (∂4) which enables programmers to integrate
their procedural knowledge with neural networks through the use of program sketches (?), specified
in a traditional programming language. The sketch defines one part of the neural network behaviour,
while the missing part is learned from data. The core insight that enables this approach is the fact that
programming languages can usually be formulated in terms of an abstract machine that executes the
commands of the language. By implementing these machines as neural networks, and constraining
parts of the networks to follow the sketched behaviour, we can learn neural programs consistent with
our procedural prior knowledge and optimised with respect to the training data.

2 Neural Forth Abstract Machine

Forth is a simple but Turing-complete stack-based programming language (??) with a simple abstract
machine. A standard Forth program defines a deterministic sequence of state transition functions on a
Forth abstract machine.

A Forth sketch is an extension of a standard Forth program for which some behavior is undefined and
learnable from data (?). We refer to these open choices as slots. Slots accommodate for cases where
a developer’s procedural knowledge is incomplete, and may vary from simple element manipulation,
command/function invocation, to a full neural network transition function which operates on the
full machine state. ∂4 is fully differentiable with respect to each time step transition as well as the
distributed input representations in the continuous machine memories. This enables us to train it from
input-output examples with gradient optimisation methods, and thus complete the missing part of the
code.

We describe the three primary components of the ∂4, as depicted in Figure 1: a differentiable machine
state, differentiable Forth words, and the execution RNN.

Differentiable Machine State The symbolic machine state of Forth consists of a data stack D,
return pointer stack R, the memory heap H and the program counter c indicating which command
of the code C is being executed. The differentiable machine state maps these elements into two
differentiable stacks (???) D and R, a differentiable flat memory H, and an attention vector c
indicating which command of the sketch P is being executed at the current time step.
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Figure 1: Neural Forth Abstract Machine. Forth code is translated to a low-level code, with slots
(denoted with {...}) substituted by a parametrised neural network. The low-level code, together with
the program counter c, data stack D, data stack pointer d, return stack R, return stack pointer r, and
the heap H are differentiable structures which comprise the machine state of the machine.

All three memory structures, data stack, return stack and the heap, are based on a differentiable flat
memory – D,R,H ∈ Rl×v buffers of length l and value width v, with well defined differentiable
reading and writing procedures, similarly to the Neural Turing Machine memory (?). In addition to
the flat memory buffer, the data stack and return stack keep separate pointers to their top-of-the-stack,
d and r. This allows for pushing and popping to be implemented in a straightforward manner, by
writing into the buffer matrix and incrementing/decrementing top-of-the-stack pointers, respectively.
Reading the top of the stack is achieved by simply multiplying the top-of-the-stack pointer and the
appropriate memory buffer.

Differentiable Forth words Forth sketches merge two important ingredients: fixed procedural
structure, and learnable functions – slots. Slots are in-place parametrised neural networks whose
parameters are learned, whereas the fixed procedural structure gets translated to neural network
modules, which depend on the used Forth words. In Forth a word is one of a set of pre-defined
language primitives (e.g. DROP, to discard the top element of the stack, or DUP, to duplicate the top
element of the stack) which acts as a function on the underlying discrete machine state. It is easy to
convert Forth words to their differentiable counterparts (functions operating in the continuous space)
by implementing their behavior via matrix operations. For example, the DROP word is simply realised
by multiplying the top-of-the-stack pointer d with a circular permutation matrix M− that circularly
shifts the vector. We analogously define differentiable variants of other core Forth words, including
control words for branching and looping.

Execution RNN Having defined the differentiable machine state and the differentiable Forth
words, we can model the execution of a Forth program using an RNN which produces a state Si+1

conditioned on a previous state Si. This is achieved by passing the current state to each word wi in
the program, and weighting each of the produced states by its component of the program counter
vector ci that corresponds to program index i, effectively using c as an attention vector over code.
Clearly this recursion, and its final state, are differentiable with respect to the program sketch P, and
its inputs. The final state of this RNN corresponds to the final state of a symbolic execution.

3 Preliminary experiments

We tested the ∂4 on two problems: bubble sort and elementary-school addition. Both tasks are difficult
for RNNs, which often fail to generalize to sequences marginally longer than the ones they have been
trained on. The results of our experiments show that it is possible to learn to complete the sketches
from a small number of training examples, and that the degree of procedural knowledge incorporated
into the sketch has a measurable effect on learning (see Figure 2 for the performance on two different
sketches). Since the resulting neural network is able to execute the sketch deterministically, the
resulting sketch is able to generalise to all sequence lengths.
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Figure 2: Train and test accuracy for varying number of training examples for bubble sort sketches
based on comparison and permutation. A COMPARISON sketch compares two numbers and chooses
whether to swap them. A PERMUTATION sketch permutes elements of the machine state, all based on
the current elements of the machine state.
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