
Learning to Plan Without a Planner

Jacob Andreas Mitchell Stern Dan Klein
Computer Science Division

University of California, Berkeley
{jda,mitchell,klein}@cs.berkeley.edu

1 Introduction

We describe a simple recurrent architecture for learning planning procedures from experience.

Agents acting under a fixed computational budget face fundamental tradeoffs when determining
how to allocate computation. On one hand, determining the optimal action at the first timestep may
require completely determining the agent’s long-term behavior (e.g. when finding a path through
a maze, Figure 2b). On the other hand, uncertainty about environment dynamics and observations
may mean that nontrivial computational effort is required to compute the best next action in every
state. Strategies for allocating computation thus form a spectrum, with planning agents (which do
almost all of their computation initially) at one end and reflex agents (which distribute computation
uniformly across timesteps) at the other.

The bulk of recent research on deep learning for interaction (in both reinforcement and imitation
learning settings) has focused on reflex agents. In these approaches, a fixed-structure deep network
maps from the current state of the environment to values [3] or probabilities [2] of subsequent actions.
While generally effective, they have been less successful at taks that require long-term reasoning.
Several recent papers propose coupling deep models with classical planning procedures like value
iteration [4] and Kalman filtering [1]. But these techniques are not generally applicable: exact
planning procedures of these kinds kind are known for only a simple world representations, and must
be specified ahead of time. What we really want is an agent architecture with the capacity to plan, but
which can learn the specific form of an appropriate planning algorithms from experience.

In this abstract, we present a set of preliminary experiments evaluating an extremely simple deep
agent architecture which allocates generic computationa to a planning stage before it begins to
act. We find that in both reinforcement imitation learning settings, across multiple domains, our
approach outperforms a standard deep reflex architecture. We make two claims: (1) that given fixed
computational resources, models implementing an “inference” precomputation phase outperform
reflex agents; and (2) more strongly, that the inference mechanism imposes a useful inductive bias,
and that shallow agents with n only for precomputation learn faster than deep agents that are allowed
n steps of computation at every timestep.

2 Approach

Our approach is motivated by three basic observations about more explicit planning-based approaches
to control:

1. Planning agents generally implement an initial, computation-heavy “inference” phase that
produces a compact representation of a plan or policy.

2. Inference is usually performed by an iterative algorithm (e.g. a dynamic program or
optimizer).

3. Once the agent begins to act, the effort required to predict the correct next action from any
given state is small relative to the planning phase.

1st Workshop on Neural Abstract Machines & Program Induction (NAMPI), @NIPS 2016, Barcelona, Spain.



…
t = 0 t = 1 t = 2

s0 s1 s2

a0 a1 a2

thinking acting

Figure 1: Model architecture. Our agent first implements a recurrent “thinking” phase (shown with dotted
connection) which repeatedly receives the initial state as input and outputs a hidden “policy representation”.
Once the agent begins to act, it conditions its action at every timestep on both the current environment state and
this representation.

The agent architecture is depicted in Figure 1. It consists of a deep “thinking” phase implemented
as an RNNfollowed by an “acting” phase during which the agent makes a shallow prediction based
on both the current environment state and the output of the thinking phase. At each step during the
acting phase, the final hidden state computed during the thinking phase is concatenated together
with features for the current environment state; these are then passed through a shallow feedforward
network that maps to a distribution over actions (in discrete action spaces) or parameters for the
action sampling distribution (in continuous spaces).

At training time, minibatches are constructed by randomly sampling a set of (initial state, current
state, action, reward) experiences from replay memory. These experiences are provided by agent
rollouts (in the RL setting) or from a task-specific optimal planner (in the imitation setting). For each
individual sample, the model is run forward and used to compute either a Q-value or a distribution
over next actions; the appropriate loss is then backpropagated all the way through the network.

3 Experiments

We present experiments for two simple problems: a maze world and lattice world. In the maze world
(Fig 2b), the model is presented with an image of a maze, as well as a start position and a goal position
in absolute (x, y) coordinates. The action space consists of all real (x, y) values, and the model must
predict a walk through the maze that reaches the goal cell without crossing any walls. In the lattice
world (Fig 2a), the model is presented with a representation of a discrete, partially connected grid.
The lattice world has four navigation actions corresponding to the four directions, as well as an “exit”
action that causes the agent to receive the reward associated with the given cell and end the game.
Each cell is associated with features that describe which of the navigational actions are available, the
reward for taking the exit action in the cell, and an indicator feature on whether or not it is currently
occupied by the agent.

Results are shown in Figure 2a–b. It can be seen that models implementing a planning phase
outperform (sometimes significantly) straightforward reflex models, even when those models are as
deep as the entire planning phase itself. While these results are preliminary, they suggest that for
problems requiring long-term reasoning, task-specific inference algorithms can be learned end-to-end,
and more generally that deep RL agents benefit from the ability to think before they act.

0.5

0.9

0.3

Start: (0, 1) Goal: (4, 3)

Model dt da rre rim

Reflex - 1 45.0 53.9
Reflex - 2 44.6 56.8
Reflex - 4 48.3 57.5
Planner 4 1 51.9 59.6
Planner 8 1 53.6 60.4

Model dt da rim

Reflex - 8 59.2
Reflex - 12 46.8
Planner 8 4 68.2

(a) (b) (c) (d)

Figure 2: (a) The lattice world, with a discrete action space. (b) The maze world, with a continuous action
space. (c) Experimental results for the lattice world. dt is the number of layers in the “thinking” module, da is
the number of layers in the “acting” module. rre is the best reward accrued when training via reinforcement
learning, while rim is the best reward accrued during imitation learning. (d) Results for the maze world.

2



References
[1] Tuomas Haarnoja, Anurag Ajay, Sergey Levine, and Pieter Abbeel. Backprop kf: Learning

discriminative deterministic state estimators. arXiv preprint arXiv:1605.07148, 2016.

[2] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

[3] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-
level control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

[4] Aviv Tamar, Sergey Levine, and Pieter Abbeel. Value iteration networks. arXiv preprint
arXiv:1602.02867, 2016.

3


	Introduction
	Approach
	Experiments

