
Separating Answers from Queries for Neural Reading Comprehension

Dirk Weissenborn
Language Technology Lab, DFKI

Alt-Moabit 91c
Berlin, Germany

dirk.weissenborn@dfki.de

Abstract

We present a novel neural architecture for an-
swering queries, designed to optimally lever-
age explicit support in the form of query-
answer memories. Our model is able to re-
fine and update a given query while sepa-
rately accumulating evidence for predicting
the answer. Its architecture reflects this sep-
aration with dedicated embedding matrices
and loosely connected information pathways
(modules) for updating the query and accu-
mulating evidence. This separation of respon-
sibilities effectively decouples the search for
query related support and the prediction of
the answer. On recent benchmark datasets for
reading comprehension, our model achieves
state-of-the-art results. A qualitative analysis
demonstrates that the model effectively accu-
mulates weighted evidence from the query and
over multiple support retrieval cycles which
results in a robust answer prediction.

1 Introduction

Recent advances in many NLP tasks were achieved
by utilizing neural architectures that employ some
form of external memory. Making use of explicit
memories enables these models to bridge long-range
dependencies and solve more complex reasoning
tasks that might involve multiple observations. Neu-
ral architectures equipped with explicit memories
are able to achieve impressive results on a variety of
NLP tasks. Memory Networks (Weston et al., 2015;
Sukhbaatar et al., 2015), for example, are able to an-
swer questions which require a higher level of read-

ing comprehension and possibly reason over multi-
ple observations.

The use of some form of external memory ap-
pears essential when tackling complex queries that
require comprehension of a given context (support).
The memory module stores explicit, contextual in-
formation of the support which either contains the
correct answer or clues that can lead to it. For
instance, attention-based architectures (Hermann et
al., 2015) encode supporting contexts typically with
(bi-directional) recurrent neural networks (RNN)
into h-dimensional latent representations (hidden
states), which jointly serve as a form of memory.
End-to-end Memory Networks (Sukhbaatar et al.,
2015) are similar although they split the support into
individual parts that are separately encoded to form
memories. These systems utilize the same learned
query representation both for selecting memories
(matching) and predicting the actual answer (pre-
diction) which can affect the overall performance.
Recent work successfully addressed this issue by di-
rectly using the retrieved hidden states (Cheng et al.,
2016) or the attention weights (Kadlec et al., 2016)
as pointers to the answer (Vinyals et al., 2015) for
prediction.

In this work we propose a novel end-to-end neu-
ral architecture for answering queries. It explic-
itly separates queries from answers and thus mod-
els the process of answering queries directly. This
is reflected in general architecture and the query-
answer based representation of supporting knowl-
edge. It also motivates the separation of query and
answer when updating the current answer prediction
and actual query after each support retrieval cycle

ar
X

iv
:1

60
7.

03
31

6v
1

 [
cs

.C
L

]
 1

2
Ju

l 2
01

6

(hop). We evaluate our model on two reading com-
prehension tasks that involve answering cloze-style
(Taylor, 1953) queries, namely the CNN/DailyMail
QA task (Hermann et al., 2015) and the named en-
tity (NE) subtask of the Children’s Book Test (CBT)
(Hill et al., 2016). These datasets provide only one
document as support per query but this is not a re-
striction because our model can also handle multi-
ple documents. Our contributions are the follow-
ing: i) we introduce a new representation of support-
ing memories in form of query-answer pairs (§3.1)
based on which ii) we develop a neural architec-
ture for answering queries that leverages this rep-
resentation (§3), iii) we evaluate our system on two
reading comprehension benchmark datasets against
other competitive systems achieving state-of-the-art
results (§4.2), and iv) we give insights into the sys-
tems ability to utilize multiple answer retrieval cy-
cles for improving its reading comprehension per-
formance (§4.3 and §4.4).

2 Related Work

Utilizing explicit memory in end-to-end differen-
tiable neural architectures has enabled models to
solve complex tasks that require learning simple al-
gorithms, or processing and reasoning over large
amounts of contextual information. Traditional ar-
chitectures, such as RNNs like the LSTM (Hochre-
iter and Schmidhuber, 1997) or GRU (Chung et al.,
2014), are not suited for these kind of tasks due
to their limited memory capacity and difficulties to
learn long-range dependencies in large contexts.

Graves et al. (2014) introduced Neural Turing
Machines (NTM). NTMs augment traditional RNNs
with external memory that can be written to and
read from. The memory is composed of a prede-
fined number of writable slots. They are addressable
via content or position shifts which allows solving
simple algorithmic tasks. The capacity is also lim-
ited, but the external memory slots can carry infor-
mation over long ranges more easily than traditional
RNNs. NTMs inspired subsequent work on using
different kinds of external memory, like queues and
stacks for solving transduction tasks (Grefenstette et
al., 2015) or neural theorem provers to perform first-
order (Rocktäschel and Riedel, 2016) inference.

Attention-based architectures store information,

typically in form of hidden RNN states, dynamically
for each time-step while processing a given con-
text. These states are retrieved through an attention
mechanism that softly selects a state that matches
a given query state. This can be viewed as keep-
ing the encoded context in memory. Such architec-
tures achieved impressive results on tasks that in-
volve larger contexts such as Reading Comprehen-
sion (Hermann et al., 2015; Kadlec et al., 2016;
Chen et al., 2016), Machine Translation (Bahdanau
et al., 2015; Luong et al., 2015) or recognizing tex-
tual entailment (Rocktäschel et al., 2016; Cheng et
al., 2016).

Based on ideas of the attention mechanism, End-
to-end Memory Networks (Sukhbaatar et al., 2015)
select explicit memories for query answering. Mem-
ories are encoded into two representations: i) the
input representation for query matching and ii)
the output representation for subsequent utilization.
This distinction is important, because the represen-
tation that is used to match the original query has a
different responsibility than the representation that is
used to answer or update the query. Thus, attention-
based approaches for answering queries using sup-
porting documents can be considered a special case
of Memory Networks where hidden states form both
the input- and output representation of the individ-
ual memories which are jointly encoded. Variants
of Memory Networks have achieved very good re-
sults in various NLP tasks, such as language mod-
eling (Sukhbaatar et al., 2015), reading compre-
hension (Hill et al., 2016) and question answering
(Sukhbaatar et al., 2015; Kumar et al., 2015; Miller
et al., 2016).

One important contribution of Memory Net-
works is the idea of refining or updating the query
(Sukhbaatar et al., 2015) or memories (Kumar et al.,
2015) for multiple memory retrieval cycles before
answering the query. This idea lead to significant
improvements for architectures that employ the at-
tention mechanism iteratively for reading compre-
hension tasks (Sordoni et al., 2016).

The core idea of our work differs from the afore-
mentioned mainly in the clear separation of query
and answer which is reflected in our models archi-
tecture and support representation. This separation
of responsibilities increases the capabilities of the
model to search through the support while selec-

tively accumulating evidence for the answer in par-
allel. Furthermore, the representation of the support
reflects the task of answering queries directly which
facilitates its usage by the model.

Recently, other forms of explicit memory have
been suggested for neural architectures. For in-
stance, associative memory can be used to effec-
tively compress multiple memories into redundant
copies of a single memory array. It has shown
very promising results, e.g., for language model-
ing (Danihelka et al., 2016) or recognizing textual
entailment (Weissenborn, 2016), and might there-
fore be suited to compress large amounts of external
memories when used in conjunction with our model.

3 Query-Answer Neural Network

Our query-answer neural network utilizes support-
ing knowledge in the form of explicit query-answer
pairs to predict the answer to a given query. Answers
from support are weighted via matching scores be-
tween their corresponding support query and the ac-
tual query. Once a weighted query-answer pair has
been retrieved it is used to update the current query
and the predicted answer representation for a subse-
quent answer retrieval cycle (hop). This process can
be repeated for a specified number of hops (T). Fi-
nally, we use the predicted answer representation af-
ter T hops as input for answer classification given a
set of possible answer candidates. Note that this ap-
proach does not require supporting answers to cor-
respond to the answer candidates.

3.1 Supporting Knowledge

Our model stores supporting knowledge as pairs of
queries (z) and answers (y). Given a set of support-
ing documents, (z, y)-pairs are formed by i) detect-
ing task-specific spans-of-interest (SOIs), ii) form-
ing (z, y)-pairs for each SOI. In this work we con-
sider cloze-style (z, y)-pairs. Thus, given a (z, y)-
pair z corresponds to an entire document with a gap
at a particular SOI (cloze-text) and y to the filler of
this gap. Consider the following example:

Query:
q: Schweinsteiger plays for the

national team of

Support Document 1:
D: Schweinsteiger scored against

Ukraine
Support Document 2:
D: Germany played against Ukraine

From this example we extract the following sup-
porting query-answer pairs, if we identified all coun-
tries (underlined) as SOIs:

Support QA 1:
z: Schweinsteiger scored against
y: Ukraine
Support QA 2:
z: played against Ukraine
y: Germany
Support QA 3:
z: Germany played against
y: Ukraine

Note that spans-of-interest can cover almost any-
thing, e.g., entire sentences or only single words.
Defining SOIs and their respective answers can be
adapted to the needs of the task at hand.

3.2 Encoding Queries

Given a (supporting) document D = (x1, ..., xN)
of symbols and spans-of-interest (SOIs) P =
{(ls, le) | ls, le ∈ [1, N]}, at first all symbols xl are
embedded by an embedding matrix Ei. Next, the
entire document D is encoded by a bi-directional
RNN resulting in representations hf

l ∈ Rh of the
forward-RNN and hb

l ∈ Rh of the backward-RNN
for each document position l ∈ [1, N]. Afterwards,
we form the following query representation for each
(ls, le) ∈ P :

zl =Wq

[
hf
ls−1

hb
le+1

]
Wq ∈ Rh × R2h (1)

The trainable parameter-matrix Wq ∈ Rh × R2h

is initialized with [In; In] and additional random
noise, where In is the identity matrix. Thus, initially
zl corresponds roughly to the sum of the forward
state hf

ls−1 of the left context and the backward state
hb
le+1 of the right context. In order to ensure that the

query representation only considers the outer con-

A
nsw

ers y
i

A
nsw

ers y
o

Q
ueries z

Query Answer

Query q

t

t + 1

Support

z1
z2
...

y1
y2
...Q

ue
rie

s

A
ns

w
er

s

support-
weights

scalar gate

element-
wise gate

Figure 1: Illustration of our architecture which demonstrates an answer retrieval cycle (hop) along with its
corresponding update of the query and answer utilizing supporting queries and answers ((z, y)-pairs). The
query representation is initialized (t = 0) by encoding the query string q. The initial answer representation
is computed based on the initial query representation.

text of the respective SOI it is required that ls ≤ le.1

Encoding supporting queries in this way has the ad-
vantage, that the entire context is encoded in con-
trast to restricting the context to a fixed-size context
window or sentence. Furthermore, word-order and
positional information is captured naturally by em-
ploying RNNs. All queries, i.e., the actual and all
supporting queries, are encoded the same way.

3.3 Encoding Answers

In this work, we consider answers to be individual
symbols. However, this approach can be extended

1It is also possible to define ls > le, s.t. the span-of-interest
becomes part of the query which might be important for some
tasks. However, we are not considering these types of tasks in
this work.

to sequences of symbols as well.

Answer Candidates Answer candidates c ∈ Aq

for a query q are embedded (c) by a second embed-
ding matrix Eo.

Supporting Answers For cloze-style queries sup-
porting answers (y) correspond to the symbols at
SOIs within the support.2 There are two encodings
of y with different applications: i) its correspond-
ing output embedding yo from Eo, and ii) its corre-
sponding input embedding yi from Ei. yo is used
to update the current answer of the model and yi is
used to update the query.

The intuition behind using yi for updating the
2Note, supporting answers do not necessarily have to corre-

spond to an actual answer candidate.

query representation is that we want to use the an-
swer as if it was a word of the original query and
would thus be embedded by Ei. yo corresponds to
the embeddings of Eo that are only used for answer
prediction.

3.4 Supporting Answer Retrieval
A supporting answer ỹ is selected softly from all
(M) supporting (z, y)-pairs by softmax-weights
based on similarity scores between all zk and the
query q. These support weights can be viewed
as attention weights over the respective supporting
(z, y)-pairs.

αk =
exp(q · zk)∑M

k′=1 exp(q · zk′)
(2)ỹi

ỹo

z̃

 =
M∑
k=1

αk

yi
k

yo
k

zk

 (3)

3.5 Query & Answer Update
Queries and answers are consecutively updated by
using supporting (z, y)-pairs realizing multi-hop an-
swer retrieval. For instance, in the example of
§3.1 the model might find Support QA 1 to fit the
original query best and retrieve the (wrong) answer
(Ukraine). It is reasonable to update the original
query with Support QA 1 which includes the answer
Ukraine. The subsequent, updated query eventually
leads to the correct answer Germany of Support QA
2. Figure 1 illustrates this process.

We utilize the weighted support-queries z̃t and
their corresponding answer input-representations yi

t

(Eq. 3) to update the current query qt by an element-
wise weighted addition (Eq. 4), where q0 = q (the
encoded query).

q̃t = tanh

U q
c

qtỹi
t

z̃t


gq
t = sigmoid

(
U q
g

[
qt
z̃t

]
+ bqg

)
qt+1 = gq

t � qt + (1− gq
t)� q̃t (4)

The answer is initialized by a gated linear trans-
formation of the initial query q (Eq. 5). The query-
answer-gate gaq decides whether the query itself can

be utilized to infer the answer for a specific task or
not. The answer representation at hop t represented
by at is updated to at+1 by adding the gated, re-
trieved answer ỹo

t (Eq. 6). The scalar answer accu-
mulation gate gat (Eq. 7) depends on: i) the similarity
between the current query qt and the weighted sup-
port queries z̃t, ii) the similarity of the original query
encoded as answer a0 and the weighted support an-
swer representation ỹo

t retrieved from support and
iii) ηt which measures the highest answer candidate
probability if ỹo

t was the final answer representation
(Eq. 8 which refers to §3.6).

a0 = sigmoid(gaq)U
a
q q (5)

at+1 = at + gat ỹ
o
t (6)

gat = sigmoid

ua
g

qt � z̃t

a0 � ỹo
t

ηt

+ ba

 (7)

ηt = max
c∈Aq

pq(c|ỹo
t) (8)

The trainable parameters of this module have the
following dimensions: U q

c ∈ Rh×R3h; U q
g ∈ Rh×

R2h; Ua ∈ Rh × Rh; b·g,u
a
g ∈ Rh; gaq , ua, ba ∈ R.

3.6 Answer Scoring & Training
After a maximum number of hops T , scores sq,c of
all answer candidates c ∈ Aq are calculated using
the inner product between their respective embed-
dings c and the final answer representation aT :

∀c ∈ Aq : sq(a, c) = a · c

pq(c|a) =
esq(a,c)∑

c′∈Aq
esq(a,c

′)
(9)

Finally, the model is trained by minimizing
the cross-entropy loss using the softmax-weights
(Eq. 9) of candidate scores as the predicted proba-
bilities.

4 Experiments

4.1 Setup
Dataset We evaluate our architecture on two re-
cently proposed benchmarks for reading compre-
hension. Both benchmarks require a system to an-
swer a cloze-style query solely based on a single

supporting document. Hermann et al. (2015) cre-
ated two datasets (CNN, DailyMail) from news ar-
ticles. For each article, queries were created from
their respective summaries by removing a named en-
tity from the summary sentence that has to be pre-
dicted. All articles in the dataset are pre-processed
by named entity recognition, co-reference resolution
and entity anonymization. Similar in mind, Hill et
al. (2016) created the Children’s Book Test (CBT).
For this dataset, passages of children’s books of 21
sentences were extracted. Within the last sentence
of the passage a word is removed that has to be pre-
dicted. The dataset is split into subtasks depending
on the part-of-speech tag of the word that has to be
predicted. We evaluate our model on the named en-
tity (NE) subtask because it is the most challenging
subtask for traditional language models.

Input Presentation & Encoding The input to the
model consists of the context document and the
query. The actual query is the cloze-text for the posi-
tion of the removed named entity, which is replaced
by a placeholder symbol. The entire input (docu-
ment + query) is encoded by a bi-directional GRU
from which the query and answer representations are
computed as described in §3.2 and §3.3. Support-
ing (z, y)-pairs are extracted at occurrences of an
answer candidate (all entities for CNN/DailyMail,
given for CBT) in the context document in form of
cloze-text (query) and its corresponding filler (an-
swer).

Training For all experiments, we use a hidden di-
mension (and embedding-size) of h = 256. We
train models with and without pre-trained word vec-
tors. The input embedding matrix Ei is partially ini-
tialized with 100-dimensional Glove-embeddings
(Pennington et al., 2014) and randomly for the rest
(156 dimensions) when using pre-trained word vec-
tors. In general, embeddings are initialized with
a Gaussian of 0-mean and 0.1-stddev, matrices as
described in Glorot and Bengio (2010) and biases
with 0, except for the encoder GRU update-gate bias
which is initialized with 1. Dropout is applied with
a rate of 0.2 to the embedded input words for reg-
ularization. We train our system using mini-batch
SGD with ADAM (Kingma and Ba, 2015) for opti-
mization using an initial learning-rate of 0.001 that
is halved whenever the accuracy on the development

set drops between checkpoints and the the first en-
tire epoch has passed. If the accuracy drops between
entire epochs training is stopped. The mini-batch
sizes/respective checkpoint iterations are 128/500
for the DailyMail and CNN datasets, and 32/1000
for the CBT NE dataset. Note, that similar to Chen et
al. (2016), we do not consider all words but only en-
tities as answer candidates for the CNN/DailyMail
dataset. Our models are trained with 4 and 8 con-
secutive answer retrieval cycles (hops) from the sup-
port, which performed better than using only 1 or
2. All models were implemented with TensorFlow
(Abadi et al., 2015).

4.2 Empirical Results
The results of our model (QANN) on the two bench-
marks are presented in Table 1a. They show that our
model outperforms current state-of-the-art results on
the CBT NE, CNN and DailyMail datasets. An im-
portant observation is that our model outperforms
the Memory Networks by a large margin. Even
with self-supervision, which explicitly introduces a
training objective for selecting the correct memory
at each hop, Memory Networks are clearly outper-
formed by our system. We attribute this to the query-
answer representation of our supporting memory
and the related architectural changes that separate
end-to-end Memory Networks from QANNs.

For our models we observe that using 4 instead of
8 answer retrieval cycles (hops) makes a difference
only if Glove is not used for initialization. Using
Glove to (partially) initialize embeddings gives a
boost in performance on all datasets.

We would like to point out that the only sys-
tems with comparable results to ours use either the
attention-weights over context-words (Iterative At-
tentive Reader) or the retrieved hidden state (Stan-
ford Attentive Reader) to predict the final answer.
Both works follow a similar idea as this work which
separates the answer that is used for prediction from
the query.

The Iterative Attentive Reader (Sordoni et al.,
2016) alternates between attention on specific parts
of the query and attention on the context document.
They found that attending over the query is very use-
ful, however, the attention is usually set on the place-
holder symbol which is similar in our approach.
They achieve similar results on the CNN dataset but

Model CBT NE CNN DailyMail

Attentive Reader= - 63.0 69.0

Stanford Attentive Reader (Glove)© - 72.4 75.8

Multi-hop Systems

Impatient Reader= - 63.8 68.0

MemNNs (window)Y 49.3 60.6 -
MemNNs (window + self-sup.)Y 66.6 66.8 -
Iterative Attentive Reader (8 hops)\ 68.6 73.3 -

QANN (4 Hops) 69.4 72.6 76.6
QANN (8 Hops) 70.3 73.4 76.4

QANN (4 Hops, Glove) 70.6 73.7 76.9
QANN (8 Hops, Glove) 70.6 73.6 77.2

(a)

Hops CBT NE CNN

1 60.4 67.0
2 67.0 72.0
3 70.0 73.3

4 70.6 73.7

5 71.2 73.3
6 71.0 73.8
7 70.7 73.2

(b)

Table 1: (a) Accuracies of different models on 3 benchmark test datasets for reading comprehension. Her-
mann et al. (2015) =, Chen et al. (2016) ©, Hill et al. (2016) Y, Sordoni et al. (2016) \. (b) Accuracies of
QANNs on the CBT NE and CNN testsets when employing a model trained with 4 answer retrieval cycles,
but applied on a varying number of retrieval cycles (hops).

are outperformed by our models on the CBT NE
dataset. We attribute this improvement to our answer
update mechanism (§3.5) which accumulates dedi-
cated answer embeddings from support over multi-
ple hops and from the original query through gates.
Thus, the final answer prediction depends not only
on the attention (support) weights, but also on the
query itself and the answer embeddings. This ad-
vantage cannot be exploited as much in the CNN
and DailyMail datasets because entities and thus all
answers are anonymized. As illustration, Figure 2c
provides an example of a correctly predicted an-
swer that does not align with the computed support
weights (see §4.4 for more details).

4.3 Impact of Multiple Answer Retrievals
We trained our models with different numbers of
supporting answer retrieval cycles (hops). We found
that using at least 4 hops leads to a significantly bet-
ter performance than using only 1 or 2 hops. This
indicates that multiple consecutive answer retrievals
and respective query updates are important for a
robust performance on the reading comprehension
tasks.

In addition, we evaluate the differences in perfor-
mance when varying the number of hops when us-

ing our model trained on 4 hops. This evaluation
gives insights into accuracy gains and the stability
of answer prediction when increasing the number of
hops. The results presented in Table 1b demonstrate
that the model gains most until 3 hops, after which
results are quite stable. The most pronounced differ-
ence occurs between using only 1 and 2 hops. The
relative stability of performance between 3 to 7 hops
indicates that the system learns to utilize the gat-
ing mechanisms which decide to keep or update the
current query and accumulate answers successfully.
Even though our model was trained with 4 hops, the
best results for the CBT NE and CNN testsets were
achieved when utilizing the model with additional
hops (5 for the CBT NE and 6 for CNN). Surpris-
ingly, for CBT we found a rather large improvement
of about 0.6 percentage points in accuracy.

4.4 Analysis
In a qualitative analysis of our system on sampled
documents from the CNN and CBT NE dataset, we
found that the correct answer is retrieved already af-
ter the first hop and kept until prediction in most
cases (64% on 1000 sampled CNN examples). How-
ever, there are interesting exceptions to this rule that
are displayed in Figure 2. It shows example doc-

(a) CNN: Correct answer retrieved after first hop but wrong prediction after subsequent hops.

(b) CNN: Wrong answer retrieved after first hop but corrected in subsequent hops.

(c) CBT NE: Retrieved answers are wrong yet system predicts answer correctly.

Figure 2: Examples of support (attention) weights for each hop for models trained with fixed 4 hops. The
legends show the activity of the respective answer gates for each hop in brackets. The predicted answer is
underlined and the correct answer is displayed in bold-face.

uments with respective attention weights for sup-
porting spans-of-interest (positions of answer can-
didates) in each hop. A general observation is that
the support weights are very pronounced for the first
hop and spread over an increasing number of posi-
tions with each additional hop. We find that highly
weighted positions can vary significantly between
hops which shows that the query is updated. As we
have shown empirically in §4.3 this can have a posi-
tive effect (8.4%), see for example Figure 2b. How-
ever, sometimes this can also result in an incorrect
prediction, although the answer was correctly found
in the first hop (2.7%) as demonstrated in Figure 2a.

A very interesting example from the CBT NE val-
idation set is displayed in Figure 2c. It shows that the
system puts high support weights on different posi-
tions in the document, but never on the correct an-
swer. Nevertheless, to our surprise the model pre-
dicts the answer correctly anyway. One explana-
tion might be that the model has learned that gen-
eral words like “people” or “sea” are not good an-
swers for the CBT NE dataset (e.g., through answer
embeddings with small norm). Another explanation
is that the query itself (which is also used to form
the final answer representation) puts a strong bias
on the final answer. To test the latter hypothesis we
set the query-gate of Eq. 5 to 0 which effectively re-
moves the query representation from the predicted
answer representation. We found that the prediction
changed to “people” which can be explained by the
support weights. This finding confirms our premise
that the query is able to put a bias on the final an-
swer, and that the use of the query itself maybe be
beneficial for answer prediction.

5 Conclusion

We have presented a new type of neural network ar-
chitecture for answering queries. It is end-to-end
trainable and learns to utilize knowledge in the form
of supporting query-answer pairs to infer the an-
swer to a given query. It explicitly separates the
query representation used for selecting support from
the answer representation used for predicting the
answer. Results on recently proposed benchmark
datasets for the task of reading comprehension show
that our model achieves better results compared to
existing systems. This shows that the idea of ex-

plicitly separating query and answer is important for
tasks that involve answering queries.

Future work involves the extension of this archi-
tecture to be able to properly handle other kinds of
queries, e.g., list-queries or queries expecting gener-
ated answers. We also believe that our architecture
can be applied successfully to a variety of tasks in
the area of information extraction.

Acknowledgments

We thank Thomas Demeester, Thomas Werkmeis-
ter, Sebastian Krause and Tim Rocktäschel for their
comments on an early draft of this work. This re-
search was supported by the German Federal Min-
istry of Education and Research (BMBF) through
the projects ALL SIDES (01IW14002), BBDC
(01IS14013E), and Software Campus (01IS12050,
sub-project GeNIE).

References

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefow-
icz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dan Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fer-
nanda Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. 2015. TensorFlow: Large-scale machine
learning on heterogeneous systems. Software avail-
able from tensorflow.org.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR.

Danqi Chen, Jason Bolton, and Christopher D. Manning.
2016. A thorough examination of the cnn/daily mail
reading comprehension task. In ACL.

Jianpeng Cheng, Li Dong, and Mirella Lapata. 2016.
Long short-term memory-networks for machine read-
ing. arXiv preprint arXiv:1601.06733.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555.

Ivo Danihelka, Greg Wayne, Benigno Uria, Nal Kalch-
brenner, and Alex Graves. 2016. Associative long
short-term memory. arXiv preprint arXiv:1602.03032.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neural
networks. In Aistats, volume 9, pages 249–256.

Alex Graves, Greg Wayne, and Ivo Danihelka.
2014. Neural turing machines. arXiv preprint
arXiv:1410.5401.

Edward Grefenstette, Karl Moritz Hermann, Mustafa Su-
leyman, and Phil Blunsom. 2015. Learning to trans-
duce with unbounded memory. In NIPS, pages 1819–
1827.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In NIPS, pages 1693–1701.

Felix Hill, Antoine Bordes, Sumit Chopra, and Jason We-
ston. 2016. The goldilocks principle: Reading chil-
dren’s books with explicit memory representations. In
ICLR, volume abs/1511.02301.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Rudolf Kadlec, Martin Schmid, Ondrej Bajgar, and Jan
Kleindienst. 2016. Text understanding with the atten-
tion sum reader network. ACL.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR.

Ankit Kumar, Ozan Irsoy, Jonathan Su, James Bradbury,
Robert English, Brian Pierce, Peter Ondruska, Ishaan
Gulrajani, and Richard Socher. 2015. Ask me any-
thing: Dynamic memory networks for natural lan-
guage processing. CoRR, abs/1506.07285.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. arXiv preprint
arXiv:1508.04025.

Alexander Miller, Adam Fisch, Jesse Dodge, Amir-
Hossein Karimi, Antoine Bordes, and Jason Weston.
2016. Key-value memory networks for directly read-
ing documents. arXiv preprint arXiv:1606.03126.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In EMNLP, volume 14, pages 1532–1543.

Tim Rocktäschel and Sebastian Riedel. 2016. Learn-
ing knowledge base inference with neural theorem
provers. In AKBC (NAACL).

Tim Rocktäschel, Edward Grefenstette, Karl Moritz Her-
mann, Tomáš Kočiskỳ, and Phil Blunsom. 2016. Rea-
soning about entailment with neural attention. ICLR.

Alessandro Sordoni, Phillip Bachman, and Yoshua Ben-
gio. 2016. Iterative alternating neural attention for
machine reading. arXiv preprint arXiv:1606.02245.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al.
2015. End-to-end memory networks. In NIPS, pages
2431–2439.

Wilson L Taylor. 1953. Cloze procedure: a new tool for
measuring readability. Journalism and Mass Commu-
nication Quarterly, 30(4):415.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In NIPS, pages 2692–2700.

Dirk Weissenborn. 2016. Neural associative memory for
dual-sequence modeling. In RepL4NLP (ACL).

Jason Weston, Sumit Chopra, and Antoine Bordes. 2015.
Memory networks. In ICLR.

