arXiv:1606.01549v1 [cs.CL] 5 Jun 2016

Gated-Attention Readers for Text Comprehension

Bhuwan Dhingra* Hanxiao Liu* William W. Cohen

Ruslan Salakhutdinov

School of Computer Science
Carnegie Mellon University
{bdhingra, hanxiaol, wcohen, rsalakhu}@cs.cmu.edu

Abstract

In this paper we study the problem of an-
swering cloze-style questions over short doc-
uments. We introduce a new attention mech-
anism which uses multiplicative interactions
between the query embedding and intermedi-
ate states of a recurrent neural network reader.
This enables the reader to build query-specific
representations of tokens in the document
which are further used for answer selection.
Our model, the Gated-Attention Reader, out-
performs all state-of-the-art models on several
large-scale benchmark datasets for this task—
the CNN & Daily Mail news stories and Chil-
dren’s Book Test. We also provide a detailed
analysis of the performance of our model and
several baselines over a subset of questions
manually annotated with certain linguistic fea-
tures. The analysis sheds light on the strengths
and weaknesses of several existing models.

1 Introduction

A recent trend to measure progress towards machine
reading is to test a system’s ability of answering
questions over the text it has to comprehend. To-
wards this end, several large-scale datasets of cloze-
style questions over a context document have been
introduced recently which allow the training of su-
pervised machine learning systems (Hermann et al.,
2015; Hill et al., 2015). The relatively unambigu-
ous nature of answers to cloze-questions provides an
objective benchmark to measure a system’s perfor-
mance at text comprehension.

*BD and HL contributed equally to this work.

Deep learning methods have been recently shown
to outperform traditional shallow approaches for this
task (Hermann et al., 2015). Their performance is
further boosted by attention mechanisms borrowed
from the machine translation literature (Bahdanau et
al., 2014). This is not surprising, as answering a
cloze-style query requires one to only attend to parts
of the document relevant to the query. Current at-
tention models aim to mimic this by weighting rep-
resentations of document sub-units (such as words
or sentences) by a score which determines their rel-
evance to the query (Hermann et al., 2015; Hill et
al., 2015; Kadlec et al., 2016).

An alternative way to selectively “attend” to dif-
ferent parts of the document while reading it is by
gating the input to the reader with the query repre-
sentation. This can be intuitively viewed as mask-
ing unimportant features of the input (for the task at
hand) and emphasizing the important ones. Specifi-
cally, we compute an element-wise product between
the query embedding and document representations
at the intermediate layers of a Bidirectional Gated
Recurrent Unit (GRU) (Cho et al., 2014) reader.
Our method was inspired by the observation that the
GRU itself provides an attention mechanism through
the use of its reset and forget gates; the element-wise
product simply helps it focus on the query. We call
this model the Gated-Attention (GA) Reader. The
effectiveness of the proposed gated-attention mech-
anism is verified by the consistent improvement of
the GA reader over various existing models on four
different benchmark datasets.

Besides achieving strong performance, we believe
an equally important metric is being able to interpret

such performance. We thus quantitatively investi-
gate the performance of several representative mod-
els over a subset of questions with annotated linguis-
tic features. This detailed analysis further justifies
the advantages of the GA Reader by showing its su-
perior performance in handling questions of diverse
linguistic nature.

The paper is organized as follows: We introduce
existing models (and their relationship to our model)
in Section 2 and then the GA Reader in Section 3.
Section 4 presents results of empirical evaluations,
followed by a detailed analysis in Section 5. We
summarize our findings in Section 6.

2 Related Work

The cloze-style QA task involves tuples of the form
(d,q,a), where d is a document, ¢ is a cloze-style
question over the contents of that document and
a is the answer to this query. The answer comes
from a fixed vocabulary A, which, depending on the
dataset, may consist of all words in the vocabulary or
a list of candidates from the current document. The
task can then be described as: given a document-
query pair (d, ¢) find a € A which answers gq.

In the following we provide an overview of exist-
ing neural architectures which have been applied to
this problem with encouraging results.

2.1 LSTMs with Attention

Several architectures introduced in (Hermann et al.,
2015) employ LSTM units to compute a combined
document + query representation g(d, ¢). Given this
representation and a lookup-table of embeddings
of possible answers W (which is shared with the
lookup-table used by the LSTM), the probability of
an answer is computed as:

plalg) < exp(W(a)g(d,q)), a€V. (1)

The motivation behind (1) is that g(d, q) should
only contain information relevant to the task at
hand—that of getting the answer a and should be
close in the vector-space to the correct answer, hence
maximizing the inner product between these repre-
sentations. Training can be performed using stan-
dard SGD over a loss-function such as cross-entropy
between true answer and its predicted probability.

With this formulation, there are three related ar-
chitectures proposed in (Hermann et al., 2015). The

DeepLSTM Reader performs a single forward pass
through the concatenated (document,query) pair to
compute g(d,). It further has two possible modes:
cqa where the document is placed before the query,
and gca where the query is placed before the docu-
ment. The Attentive Reader computes a document
vector r and query vector ¢ separately and then com-
bines them through an additional feed-forward layer
to give g(d, ¢). The document vector r is computed
using a weighted average of the intermediate token
representations learned by a bi-directional LSTM,
where the weights are computed conditioned on the
query vector ¢q. This is the conventional attention
mechanism which favors certain tokens over others
based on the query. The Impatient Reader is sim-
ilar to the Attentive reader, but computes the docu-
ment vector r iteratively such that the weight distri-
bution over tokens in each iteration is conditioned on
a particular query token (or its representation from
the corresponding bi-directional LSTM).

The Attentive and Impatient Readers give similar
performance on the CNN and Daily Mail datasets,
and both outperform the DeepLSTM Reader (cf.
(Hermann et al., 2015)). In our model we also use
recurrent neural networks to read the document and
query, but use a different attention mechanism and
restrict candidate answers to the tokens appearing in
the document.

2.2 Memory Networks

The Memory Network architecture was proposed in
(Weston et al., 2014) and applied to the datasets
considered here in (Hill et al., 2015). In Mem-
Nets, each sentence s in the input document is en-
coded to a memory m. This encoding uses a sim-
ple averaging of the vectors assigned to a window
within the sentence around candidate answers. In
line with conventional attention, the relevance of a
particular memory m; to the query is computed by
taking its dot-product with the query vector ¢ and
passing it through a softmax layer to get a distribu-
tion over all memories. Let this be «;. The overall
memory in this first pass, relevant to the query, is
then m,1 = Zz a;m;. This process is repeated for
several iterations, and each time the input query is
Qk = Qr—1 + Mok—1, wWith go = q.

The intuition behind this computation is that mul-
tiple hops over the same set of memories allow the

model to reason over them individually. In each hop,
the model can select a relevant memory and add it to
the input for the next hop. Indeed, experiments on
a different dataset from (Weston et al., 2014) show
the effectiveness of the model to reason over docu-
ments. Combined with a set of heuristics, such as in-
termediate supervision and model ensembling, this
architecture outperforms all the models discussed in
section 2.1.

In this work, we retain the key idea of using mul-
tiple layers in the reader to effectively allow reason-
ing over the document, but employ recurrent neural
networks for encoding memories (in our case a doc-
ument) and the query.

2.3 Attention Sum Reader

The AS reader, presented in (Kadlec et al., 2016),
obtains the current state-of-the-art performance on
the datasets under consideration here. This is a sim-
plified version of the DeepLSTM Reader which uses
a bi-directional GRU network (Cho et al., 2014) to
encode the query and document each into vectors.
Then, candidate answers which appear in the doc-
ument are evaluated by extracting their contextual
representations from the bi-GRU and taking a dot-
product with the query vector ¢q. This gives a score
for each possible answer, which is normalized by the
softmax function. Finally, multiple mentions of the
same candidate entity are combined by adding up
their probabilities, and the token with the maximum
aggregated probability is selected as the predicted
answer. This aggregation scheme is known as the
pointer sum attention.

An important consequence of summing multiple
mentions of an answer is that this model favors enti-
ties which occur frequently in the input document.
However, as discussed in (Hermann et al., 2015),
correct answers often appear frequently in the doc-
ument for the news datasets in consideration here,
so this generally improves model accuracy. The au-
thors also present results on an ensemble of models
with the same architecture which does significantly
better than any single model.

The AS reader is a special case of our model with
only a single layer and without the gated-attention
mechanism described in detail below. These addi-
tions make the GA reader more expressive, and are
justified by its superior performance.

2.4 Dynamic Entity Representations

The Dynamic Entity Representation (DER) network
was recently introduced by (Kobayashi et al., 2016).
This model builds dynamic representations of the
candidate answers (entities in their case) while read-
ing the document, by using a max-pooling function
to accumulate the information collected on an entity
so far. The model is motivated by the anonymiza-
tion of entities in the CNN and Daily Mail datasets,
and shows improved performance over previous ap-
proaches on the CNN dataset. Results on the Daily
Mail and CBT datasets are not presented.

In our model we do not accumulate information
over candidate answers while reading. Instead, we
dynamically gate their representations between lay-
ers to “mask” away less informative features in their
representation and retain the important ones.

3 Gated-Attention Reader

3.1 Motivation

Our method extends the Attention Sum (AS) Reader,
and performs multiple hops over the input docu-
ment similar to the Memory Networks architecture
(Sukhbaatar et al., 2015). We use the same pointer
sum attention mechanism as the AS reader in the
output layer to obtain a distribution over candidate
answers. End-to-end memory networks have been
shown to perform well on synthetic QA tasks which
require reasoning over multiple input sentences, and
a key reason for this is its multi-layered architec-
ture which performs several passes over the context
(Sukhbaatar et al., 2015). Based on these findings
we also incorporate multiple layers in our model.

Our key contribution, however, is in a gated-
attention mechanism, where after the first layer, sub-
sequent hops over the document are gated by the
query representation using an element-wise combi-
nation at layer inputs (Figure 1). This is in con-
trast to conventional attention mechanisms which
apply a weighted averaging of layer outputs with the
weights determined by a dot-product between query
and document, e.g., attention mechanisms in all ar-
chitectures discussed in section 2.

Compositional operators for merging vector space
representations of text have been studied extensively
in the literature without a clear consensus on the
best one. Depending on the task at hand, in some

X visited prague m

P(Obamald, q)

Aggregation

(query)
1 1 2
be e
Obama 1, el 1
X3 | e e3
met I >
1 1 2 2
X e be e
prague ——»| LA T T T -
(document) K Layers

Figure 1: Gated-Attention Reader. Dashed lines represent dropout connections. See section 3.2 for detailed

descriptions.

cases addition seems to perform better (for example
when composing phrase representations (Mitchell
and Lapata, 2008)), in others multiplication does
better (for example when modeling entity relations
(Yang et al., 2014)). In our experiments, we ex-
plored both addition and multiplication as well as
concatenation for the element-wise gating operation
discussed above, and multiplication performed best.
Previously, (Kiros et al., 2014) also used multiplica-
tive interactions between text attributes (such as au-
thor information) and word embeddings to derive
context-dependent text representations. For the GA
reader, the query representation can also be viewed
as an attribute conditioned on which we want to
learn the relevant document representation.

3.2 Model Details

Figure 1 illustrates the Gated-Attention (GA) reader.
Each box labeled Bi-GRU denotes a bidirectional
Gated Recurrent Unit network (Cho et al., 2014).
The GA reader reads input documents and queries
over K horizontal layers. At each layer, we com-
bine the final forward and backward GRU hidden
states to get the layer-specific query vector:

q' = hig (D115 (),

where || stands for concatenation, |Q] is the query
length, and h{ (i) and h?(i) are forward and back-
ward GRU hidden states at time ¢ in layer ¢, respec-
tively. GRUs which encode the query are shown in
green in the figure.

i=1,2,..K, (2

For the document, input at the first Bi-GRU layer
consists of word embeddings for the words in the
document z; = L(w;), where L € RIVI*9r s the
word-lookup table, and w; are indices into the word
vocabulary. To compute the input to subsequent Bi-
GRU layers, we use the Gated-Attention mechanism
by applying an element-wise multiplication between
the query embedding ¢*~! and the outputs ¢!~ ' from
the previous layer:

=¢ e, t=1,2,.0d. i=2,..K.
3)
Here |d| is the document length and © represents
element-wise multiplication (a.k.a. Hadamard prod-
uct). Layer outputs e! are the contextual embeddings
of document tokens formed by concatenating inter-
mediate forward and backward GRU hidden states:

e =ni(D|nt@), t=1,2,..|d. i=1,..K.
“)
GRUs encoding the document are shown in blue in
Figure 1. To obtain the probability that a particular
token in the document answers the query we take an
inner-product between outputs of the last layer ¢
and e*, and pass through a soft-max layer:

5 — —oxplla® o))

- J
> exp{(eX)}

where (,) denotes dot-product between two vectors.

Finally, similar to the AS reader, we aggregate the
probabilities for tokens which appear multiple times

t=1,2,..|d, ()

Table 1: Dataset statistics.

Dataset #Train #Val #Test #Vocab

CNN 380,298 3,924 3,198 118,497

Daily Mail 879,450 64,835 53,182 208,045
CBT-NE 108,719 2,000 2,500 53,063
CBT-CN 120,769 2,000 2,500 53,185

in a document before selecting the maximum as the
predicted answer (here I (a, d) is the set of positions
where token a appears in the document d):

P(ald,q) =) s (6)

i€l(a,d)

a* =argmax,c4 Plald,q). (7

We then use cross-entropy loss between the pre-
dicted probabilities and true answers for training. In
the special case where K = 1, the above GA reader
reduces to the Attention-Sum Reader.

4 Experiments and Results

4.1 Datasets

We evaluate the GA reader on four datasets. The
first two, CNN and Daily Mail News Stories', come
from (Hermann et al., 2015) and consist of News
articles from the popular CNN and Daily Mail web-
sites. A query over each article was formed by re-
moving an entity from the short summary which fol-
lows the article. Further, entities within each article
were anonymized to make the task purely a compre-
hension one. N-gram statistics, for instance, com-
puted over the entire corpus are no longer useful in
such an anonymized corpus.

The other two datasets are formed from two dif-
ferent subsets of the Children’s Book Test (CBT)”
(Hill et al., 2015). Documents consist of 20 contigu-
ous sentences from the body of a popular children’s
book, and the query is formed by deleting a token
from the 21% sentence. We only focus on subsets
where the deleted token is either a common noun
(CN) or named entity (NE) since simple language
models already give human-level performance on
the other types (cf. (Hill et al., 2015)).

lhttps://qithub.com/deepmind/rcfdata

2http://www.thespermwhale.com/jaseweston/
babi/CBTest.tgz

Table 2: Optimum hyperparameters for each dataset.

Dataset K d p

CNN 3 25 02
Daily Mail 2 256 0.2
CBT-NE 2 128 04
CBT-CN 2 128 04

Statistics of the four datasets used in our experi-
ments are summarized in Table 1.

4.2 Implementation Details

Our model was implemented using the Theano’
and Lasagne* Python libraries. We used Stochas-
tic Gradient Descent with ADAM updates for train-
ing, which combines classical momentum and adap-
tive gradients (Kingma and Ba, 2014). The learn-
ing rate was set to 0.0005 and the batch size at
each iteration to 32 for all models & datasets. We
also used gradient clipping with a threshold of 10
to stabilize the GRU training (Pascanu et al., 2012).
Word embeddings are of size 128 for all models &
datasets, initialized with vectors obtained by run-
ning the word2vec toolkit’ on all documents and
queries in the training set. We empirically found that
this approach led to faster convergence. All other
parameters were initialized to their default values as
specified in the Lasagne library.

Three parameters were tuned on the validation set
for each dataset—the number of layers K, GRU hid-
den state sizes (both query and document) d, and the
dropout rate p. We experimented with K = {2,3},
d = {256,384} and p = {0.1,0.2,0.3,0.4,0.5}.
Memory constraints prevented us from experiment-
ing with higher K. Optimal values for each dataset
are shown in Table 2, though it should be noted that
several different settings give similar performance.

4.3 Performance Comparison

Table 3 shows the performance of all methods
discussed above on CNN, Daily Mail and CBT
datasets. Following the setting of previous works,
we compare both the single best models and their
ensembles. For the GA reader the best M trained

3http://deeplearning.net/software/theano/
4https://lasagne.readthedocs.io/en/latest/
5https://code.google.com/archive/p/wordZvec/

https://github.com/deepmind/rc-data
http://www.thespermwhale.com/jaseweston/babi/CBTest.tgz
http://www.thespermwhale.com/jaseweston/babi/CBTest.tgz
http://deeplearning.net/software/theano/
https://lasagne.readthedocs.io/en/latest/
https://code.google.com/archive/p/word2vec/

Table 3: Validation/Test accuracy (%) of all models on CNN, Daily Mail and CBT datasets. Results marked

with { are cf previously published works. Best single/ensemble models are in red/blue.

Model | CNN | DailyMail | CBT-NE | CBT-CN

‘ Val Test ‘ Val Test ‘ Val Test ‘ Val Test

Humans (query) | - - - - - 520 - 644

Humans (context + query) T | - - - - - 816 - 816

LSTMs (context + query) | — - | — - [512 418|626 56.0
Deep LSTM Reader { 550 570|633 622| - - - -
Attentive Reader { 61.6 63.0| 705 69.0| - - - -
Impatient Reader | 61.8 63.8 690 680 | - - - -

MemNets (single model) t | 63.4 66.8 | - - | 704 666 | 642 63.0
MemNets (ensemble) f 662 694 | - - - - - -

AS Reader (single model) ¥ | 68.6 69.5 | 75.0 739 | 73.8 68.6 | 68.8 634

AS Reader (ensemble) { 739 754|787 7771762 710|711 689
DER Network 713 129 - - | - - | - -

GA Reader (single model) | 73.0 73.8 | 76.7 75.7 | 749 69.0 | 69.0 63.9

GA Reader (ensemble) 764 774 |79.1 781|755 719 | 72.1 694

models on each dataset were selected as ensemble
members, where M was tuned on the validation set.

The single best GA readers outperform all previ-
ously published single models on all four datasets.
Meanwhile, combining together multiple GA read-
ers gives the new state-of-the-art ensemble results on
all four datasets. Improvement for the single models
is greater for Daily Mail and CNN datasets as com-
pared to the CBT datasets, for which the GA reader
was prone to overfitting. The CBT datasets are con-
siderably smaller than the other two, thus this is not
surprising given the higher expressive power of GA
reader. Improvement for the ensembles is signifi-
cant for the CNN and CBT-NE datasets, but mild for
Daily Mail and CBT-CN datasets.

4.4 Visualizing Attention

Figure 2 presents two example questions from the
CNN test set with an overlaid heat-map showing the
attention at the output layer of the GA reader. The
attention is computed as the value of s; in equation
(5) for each token in the document, and is only visu-
alized when s; > 0.05. Both questions require the
system to understand paraphrases as well as reason
over multiple evidence sentences to arrive at the cor-

rect answer. The GA reader manages to attend to the
right tokens in both cases.

5 Detailed Analysis

5.1 Linguistic Feature Annotation

To gain insights about the neural readers’ behavior
at a more detailed level, we randomly sampled 100
questions from the test set of CNN and manually an-
notated their linguistic features®. For each question,
features that may potentially correlate with the neu-
ral readers’ performance were extracted, as outlined
in Table 4. In this paper, we primarily focus on two
types of linguistic features:

o Plain Features that are automatically annotated
by scripts, such as document/query length, an-
swer frequency, etc. Most of them are straight-
forward meta-information about the question.

e Semantic Features that are manually annotated
by a human expert. For example, whether logi-
cal reasoning is necessary to obtain the correct
answer. Features of this type are arguably more

5We plan to make the annotated questions publicly available
if the manuscript is accepted for publication.

(@entity3) an @entity2 citizen was wounded by gunfire thursday as
she drove from the medical school in @entity6.0s5), @entity7(.100),
where she works, police said ... @entity9 had left the @entity18,
where she works as vice principal, to pick up her two daughters
from school ... she has lived in @entity7o.161)since 1996 and is
married to a @entity32 @entity7 who is a librarian at the @entity34
in @entity6(.249). @entity6 police are investigating, @entity13 said.

Query: she is vice principal of the @entity18 in @placeholder

(a) GA reader correctly answered @entity6.

the late @entity9 set the modern standard for the national anthem at
(@entity33. in the early stages of the @entity35 in 1991, a patriotic
(@entity2 saluted her performance. just six months earlier, comedian
@entity37(.305 may have established the low-water mark. the crowd
at the @entity41 game booed her rendition and president @entity43
called it “disgraceful.”

Query: @entity9 nailed it ; @placeholder destroyed it
(b) GA reader correctly answered @entity37.

Figure 2: GA Reader’s final-layer attention (before aggregation) over tokens in the questions.

Plain Features

Feature Name Value Description

Document Length (DL) Ry Total number of words in the context in logarithmic scale, namely log(|d|).
Query Length (QL) Ni Total number of words in the query, namely |g|.

Answer Frequency (AF) N Count of correct answers in d.

Answer First Location (AFL) [0,1] Distance from the 1st answer occurrence to the beginning of d, normalized by |d]|.
Answer Last Location (ALL) [0,1] Distance from the last answer occurrence to the end of d, normalized by |d|.
Semantic Features

Feature Name Value Description

Evidence Sentence (ES) N4 Number of evidence sentences in d needed in order to correctly answer the query.
N-gram (NG) {0,1} If there is an N-gram in d that overlaps with the correct answer and its context in g.
Paraphrase (P) {0,1} Whether the query is rephrased in the document.

Logical Reasoning (LR) {0,1} If multiple independent facts need to be logically combined to obtain the answer.
Temporal Reasoning (TR) {0,1} Special case of Logical Reasoning, where the temporal order of events matters.

Table 4: Annotated linguistic features for the 100 CNN questions.

%e

N
o

Percental

oIIII

ES=1ES=2ES>2 LR NG P
Features

Figure 3: Corpus statistics of manually annotated se-
mantic features. The y-axis stands for the percent-
age of questions among the 100 samples conditioned
on each feature.

TR

precise indicators about the intrinsic semantic
nature of any given question.

Figure 3 summarizes the corpus statistics regard-
ing semantic features. Interestingly, the figure shows
that the majority of the questions can be answered
based on N-grams or paraphrases with less than two

evidence sentences. This suggests relying on accu-
racy as the sole metric for model evaluation could
be misleading, as a high accuracy can be achieved
by pure “memorizing” regardless of the model’s ca-
pability of capturing real semantics.

5.2 Conditional Performance

In this subsection, we investigate the performance
of several representative models conditioned on a
subset of questions with certain semantic features.
As we discussed above, breaking down overall ac-
curacy into multiple conditional performances will
enable us to get a more comprehensive view about
the strength and weakness of different architectures.

Four models are chosen for comparison: (1) the
word distance benchmark (WD), a simple yet strong
baseline relying on word distance measurements; (2)
the Deep LSTM Reader, a representative LSTM-
based neural architecture (Hermann et al., 2015);
(3) the Attention Sum (AS) Reader, which achieves

Models EWDEDeepLSTMEASEGA

1.00-

0.75- I

gl

Al ES=1ES=2ES>2 LR NG P TR
Features
Figure 4: Conditional performance of the word dis-
tance model, Deep LSTM, AS and GA readers over
the 100 CNN questions with respect to different se-
mantic features. “All” refers to the overall perfor-
mance on the 100 questions without conditions.

Yy

Accurac
o
o
<

0.25-

the state-of-the-art performance over several text
comprehension tasks (Kadlec et al., 2016); (4) GA
reader, our proposed model.

Results are reported in Figure 4, where the con-
ditional performance of GA reader dominates other
baselines except for temporal reasoning, showing a
balanced strength in handling questions across the
spectrum. While all models show weakness in rea-
soning with multiple facts (ES > 3), we notice GA
reader wins with a good margin in terms of com-
bining two facts (ES = 2), suggesting its advan-
tages in preliminary logical reasoning. The results
also empirically justify the merits of attention sum,
as both AS and GA readers significantly outperform
WD and vanilla deep LSTM over all question types.

5.3 Sensitivity Analysis

With the linguistic features in Table 4, each of the
100 CNN sample questions can be summarized as
an 11-dimensional vector x (10 features plus an in-
tercept). Let y = 1 if the question has been correctly
answered and y = 0 otherwise. One can therefore
quantitatively characterize the sensitivity of the neu-
ral readers’ performance w.r.t. different linguistic
features by fitting a linear regression model where z
and y are treated as explanatory and response vari-
ables, respectively 7. The resulting regression coeffi-
cients and p-values can effectively summarize which
features are influential to the model performance.

"Before regression, all features were normalized to the range
of [0, 1] to make their scales comparable.

Models EWDEDeepLSTMEIASEIGA

=

W% T ™[Em

Influence on Accuracy
|
AN

AF AFL ALL DL ES LR NG P QL TR
Features
Figure 5: Regression coefficients of various linguis-
tic features with respect to the performance of differ-
ent models. A positive coefficient indicates a posi-
tive influence on the corresponding model’s test-set
accuracy and vice versa. Coefficients that are statis-
tically significant (o = 5%) are marked with “4”.

Figure 5 shows the regression coefficients associ-
ated with different linguistic features in Table 4. Be-
sides the known effect of DL and AF that have been
discussed in the literature, we see the involvement of
logical reasoning (LR), paraphrases (P) and multi-
ple evidence sentences (ES) consistently lead to de-
creased performance for all models, though multi-
layered architectures (DeepLSTM, GA) are empiri-
cally more robust than single-layer (AS) or shallow
(WD) ones in those aspects. Interestingly, Figure 5
also shows AFL is playing a crucial role. One pos-
sible explanation is that questions whose answers
appear early tend to be relatively easier in nature.
Meanwhile, it is not hard to verify that with high
probability AFL will be negatively correlated with
AF, a quantity known to have significance influence
on the performance of most models.

6 Conclusion

We presented the Gated-Attention reader for an-
swering cloze-style questions over context docu-
ments. The model features a novel multiplicative
gating mechanism, and further combines the mer-
its of both point-sum attention and the multi-layered
architectures of Memory Networks. Our model de-
sign was justified by its state-of-the-art performance
over several large-scale benchmark datasets under
both single-best and ensemble settings, and backed
up by a detailed performance analysis with respect
to questions with various linguistic features.

Acknowledgments

The authors would like to thank Eduard Hovy and

Teruko Mitamura for useful discussions and feed-
back.

References

[Bahdanau et al.2014] Dzmitry Bahdanau, Kyunghyun
Cho, and Yoshua Bengio. 2014. Neural machine
translation by jointly learning to align and translate.
arXiv preprint arXiv:1409.0473.

[Cho et al.2014] Kyunghyun Cho, Bart Van Merriénboer,
Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. 2014. Learn-
ing phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

[Hermann et al.2015] Karl Moritz Hermann, Tomas Ko-
cisky, Edward Grefenstette, Lasse Espeholt, Will Kay,
Mustafa Suleyman, and Phil Blunsom. 2015. Teach-
ing machines to read and comprehend. In Advances in
Neural Information Processing Systems, pages 1684—
1692.

[Hill et al.2015] Felix Hill, Antoine Bordes, Sumit
Chopra, and Jason Weston. 2015. The goldilocks
principle: ~ Reading children’s books with ex-
plicit memory representations. arXiv preprint
arXiv:1511.02301.

[Kadlec et al.2016] Rudolf Kadlec, Martin Schmid, On-
drej Bajgar, and Jan Kleindienst. 2016. Text under-
standing with the attention sum reader network. arXiv
preprint arXiv:1603.01547.

[Kingma and Ba2014] Diederik Kingma and Jimmy Ba.
2014. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980.

[Kiros et al.2014] Ryan Kiros, Richard Zemel, and Rus-
lan R Salakhutdinov. 2014. A multiplicative model
for learning distributed text-based attribute representa-
tions. In Advances in Neural Information Processing
Systems, pages 2348-2356.

[Kobayashi et al.2016] Sosuke Kobayashi, Ran Tian,
Naoaki Okazaki, and Kentaro Inui. 2016. Dynamic
entity representations with max-pooling improves ma-
chine reading. In NAACL-HLT.

[Mitchell and Lapata2008] Jeff Mitchell and Mirella Lap-
ata. 2008. Vector-based models of semantic composi-
tion. In ACL, pages 236-244.

[Pascanu et al.2012] Razvan Pascanu, Tomas Mikolov,
and Yoshua Bengio. 2012. On the difficulty of
training recurrent neural networks. arXiv preprint
arXiv:1211.5063.

[Sukhbaatar et al.2015] Sainbayar Sukhbaatar, Jason We-
ston, Rob Fergus, et al. 2015. End-to-end memory
networks. In Advances in Neural Information Process-
ing Systems, pages 2431-2439.

[Weston et al.2014] Jason Weston, Sumit Chopra, and
Antoine Bordes. 2014. Memory networks.
preprint arXiv:1410.3916.

[Yang et al.2014] Bishan Yang, Wen-tau Yih, Xiaodong
He, Jianfeng Gao, and Li Deng. 2014. Learn-
ing multi-relational semantics using neural-embedding
models. arXiv preprint arXiv:1411.4072.

arXiv

	1 Introduction
	2 Related Work
	2.1 LSTMs with Attention
	2.2 Memory Networks
	2.3 Attention Sum Reader
	2.4 Dynamic Entity Representations

	3 Gated-Attention Reader
	3.1 Motivation
	3.2 Model Details

	4 Experiments and Results
	4.1 Datasets
	4.2 Implementation Details
	4.3 Performance Comparison
	4.4 Visualizing Attention

	5 Detailed Analysis
	5.1 Linguistic Feature Annotation
	5.2 Conditional Performance
	5.3 Sensitivity Analysis

	6 Conclusion

